




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
lingo软件求解线性规划及灵敏度分析注:以目标函数最大化为例进行讨论,对求最小的问题,有类似的分析方法!所有程序运行环境为lingo10。一、用lingo软件求解线性规划例1:在模型窗口输入:model:max=2*x+3*y;4*x+3*y=10;3*x+5*y12;! the optimal value is :7.454545 ;End如图所示:运行结果如下(点击 工具栏上的solve或点击菜单lingo下的solve即可):Global optimal solution found. Objective value: 7.454545(最优解函数值) Total solver iterations: 2(迭代次数) Variable (最优解) Value Reduced Cost X 1.272727 0.000000 Y 1.636364 0.000000 Row Slack or Surplus Dual Price 1 7.454545 1.000000 2 0.000000 0.9090909E-01 3 0.000000 0.5454545例2:在模型窗口输入:model:max=5*x1+4*x2;x1+3*x2+x3=90;2*x1+x2+x4=80;x1+x2+x5=45;end运行(solve)结果如下:Global optimal solution found. Objective value: 215.0000 Total solver iterations: 3 Variable Value Reduced Cost X1 35.00000 0.000000 X2 10.00000 0.000000 X3 25.00000 0.000000 X4 0.000000 1.000000 X5 0.000000 3.000000 Row Slack or Surplus Dual Price 1 215.0000 1.000000 2 0.000000 0.000000 3 0.000000 1.000000 4 0.000000 3.000000例3在模型窗口输入:model:min=-x2+2*x3;x1-2*x2+x3=2;x2-3*x3+x4=1;x2-x3+x5=2;end运行结果如下: Global optimal solution found. Objective value: -1.500000 Total solver iterations: 2 Variable Value Reduced Cost X2 2.500000 0.000000 X3 0.5000000 0.000000 X1 6.500000 0.000000 X4 0.000000 0.5000000 X5 0.000000 0.5000000 Row Slack or Surplus Dual Price 1 -1.500000 -1.000000 2 0.000000 0.000000 3 0.000000 0.5000000 4 0.000000 0.5000000例4:在模型窗口输入:model:min=abs(x)+abs(y)+abs(z);x+y1;2*x+z=4;free(x);free(y);free(z);End求解器状态如下:(可看出是非线性模型!)运行结果为: Linearization components added: Constraints: 12 Variables: 12 Integers: 3 Global optimal solution found. Objective value: 3.000000 Extended solver steps: 0 Total solver iterations: 4 Variable Value Reduced Cost X 2.000000 0.000000 Y -1.000000 0.000000 Z 0.000000 0.000000 Row Slack or Surplus Dual Price 1 3.000000 -1.000000 2 0.000000 1.000000 3 0.000000 -1.000000二、用lingo软件进行灵敏度分析实例例5: 在模型窗口输入:Lingo模型:model:max=60*x+30*y+20*z;8*x+6*y+z48;4*x+2*y+1.5*z20;2*x+1.5*y+0.5*z8;y5;end(一)求解报告(solution report)通过菜单LingoSolve可以得到求解报告(solution report)如下:Global optimal solution found at iteration: 0 Objective value: 280.0000 Variable Value Reduced Cost X 2.000000 0.000000 Y 0.000000 5.000000 Z 8.000000 0.000000 Row Slack or Surplus Dual Price 1 280.0000 1.000000 2 24.00000 0.000000 3 0.000000 10.00000 4 0.000000 10.00000 5 5.000000 0.000000分析Value,Reduced Cost,Slack or Surplus,Dual Price的意义如下:1、最优解和基变量的确定Value所在列给出了问题的最优解。由于基变量取值非零,因此Value所在列取值非零的决策变量x,z是基变量。2、差额成本Reduced Cost(或opportunity cost)所在列的三个数值表示当决策变量取值增加一个单位时,目标函数值的减少量。例如:第2个数5表示当变量y增加一个单位时,最优目标函数值减少的量。例如:当y=1时,最优目标函数值为280-5=275。可通过如下模型可检验:model:max=60*x+30*y+20*z;8*x+6*y+z48;4*x+2*y+1.5*z20;2*x+1.5*y+0.5*z8;y5;y=1;end注:(1)换一个角度说,就是目标函数中变量y的系数增加5,那么生产y才会有利!(2)基变量的Reduced Cost值为0,只有非基变量的Reduced Cost值才可能不为0;故由value,和Reduced Cost值分析可知y为非基变量。3、松弛变量取值Slack or Surplus所在列的各数表示各行的松弛变量的取值。目标函数行的Slack or Surplus值没啥意义,不用考虑。可通过如下模型检验:model:max=60*x+30*y+20*z;8*x+6*y+z+s1=48;4*x+2*y+1.5*z+s2=20;2*x+1.5*y+0.5*z+s3=8;y+s4=5;end4、对偶价格(影子价格)Dual Price所在列的各数表示相应约束条件的右端常数增加一个单位时,最优目标函数值的增加量。注,只有紧约束行的Dual Price值不为0。例如:要检验第二行约束,可通过如下模型:model:max=60*x+30*y+20*z;8*x+6*y+z48;4*x+2*y+1.5*z21;2*x+1.5*y+0.5*z8;y5;end(二)灵敏度分析报告 首先设置:LingoOptionsGeneral solverDual computationsPrices and Range。 当求解完成后,最小化求解报告窗口,然后点击菜单LingoRange,可得灵敏度分析报告: Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X 60.00000 20.00000 4.000000 Y 30.00000 5.000000 INFINITY Z 20.00000 2.500000 5.000000 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 48.00000 INFINITY 24.00000 3 20.00000 4.000000 4.000000 4 8.000000 2.000000 1.333333 5 5.000000 INFINITY 5.000000分析Objective Coefficient Ranges,Righthand Side Ranges的意义如下:1、目标函数中系数的变化对最优基的影响 Objective Coefficient Ranges表示目标函数行各系数在某个范围内变化时,最优基保持不变。以变量x的系数为例:当x的系数在内取值时,最优基保持不变。此时,最优解不变,最优目标函数值变了。例如:可通过如下模型检验:model:max=56.0001*x+30*y+20*z;8*x+6*y+z48;4*x+2*y+1.5*z20;2*x+1.5*y+0.5*z8;y5;end2、约束条件右端常数变化对最优基的影响 Righthand Side Ranges表示约束右端项各数在某个范围内变化时,最优基保持不变。以第一个约束行为例:当右端项在内取值时,最优基保持不变。此时,最优解,目标函数的最优值变化了。例如:可通过如下模型检验:model:max=60*x+30*y+20*z;8*x+6*y+z4800;4*x+2*y+1.5*z20;2*x+1.5*y+0.5*z8;y=0)bnd(a,x,b)Axb练习:1、建立线性规划模型并求解(1)某工厂生产甲、乙两种产品。已知生产甲种产品需耗种矿石、种矿石、煤;生产乙种产品需耗种矿石、种矿石、煤。每甲种产品的利润是元,每乙种产品的利润是元。工厂在生产这两种产品的计划中要求消耗种矿石不超过、种矿石不超过、煤不超过。甲、乙两种产品应各生产多少,能使利润总额达到最大?(2)设有A1,A2两个香蕉基地,产量分别为60吨和80吨,联合供应B1,B2,B3三个销地的销售量经预测分别为50吨、50吨和40吨。两个产地到三个销地的单位运价如下表所示:表1(单位运费:元/吨)问每个产地向每个销地各发货多少,才能使总的运费最少?2、用Lingo软件对下列线性规划问题进行灵敏度分析。(1)(2)(3)3、综合题某工厂用甲,乙两种原料生产A,B,C,D 四种产品,每种产品的利润、现有原料数量及每种产品消耗原料定额如下表:每万件产品所耗原料(千克)ABCD现有原料(千克)甲3210418乙0022.53每万件产品利润(万元)985019问题:(1)怎样组织生产才能使总利润最大?(2)如果产品A的利润有波动,波动范围应限制在什么范围内,才能使得原生产计划不变?(3)若原料甲的数量发生变化,在什么范围内变化时才能使得原生产计划不变?(4)若工厂引进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论