




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷高港区第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D42 九章算术是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD3丈,长AB4丈,上棱EF2丈,EF平面ABCD.EF与平面ABCD的距离为1丈,问它的体积是( )A4立方丈 B5立方丈C6立方丈 D8立方丈 3 棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )A B C D4 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,45 “x0”是“0”成立的( )A充分非必要条件B必要非充分条件C非充分非必要条件D充要条件6 曲线y=在点(1,1)处的切线方程为( )Ay=x2By=3x+2Cy=2x3Dy=2x+17 设xR,则x2的一个必要不充分条件是( )Ax1Bx1Cx3Dx3 8 若函数y=x2+bx+3在0,+)上是单调函数,则有( )Ab0Bb0Cb0Db09 定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是610已知集合A=x|a1xa+2,B=x|3x5,则AB=B成立的实数a的取值范围是( )Aa|3a4Ba|3a4Ca|3a4D11已知直线mxy+1=0交抛物线y=x2于A、B两点,则AOB( )A为直角三角形B为锐角三角形C为钝角三角形D前三种形状都有可能12若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t二、填空题13抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分已知P(400X450)=0.3,则P(550X600)=14抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)15已知含有三个实数的集合既可表示成,又可表示成,则 .16一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是17()0+(2)3 =18在数列中,则实数a=,b=三、解答题19如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥ABCDE,使AC=(1)证明:平面AED平面BCDE;(2)求二面角EACB的余弦值 20(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值21已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围22(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都相切.(1)求;(2)若直线与圆交于两点,求.23双曲线C与椭圆+=1有相同的焦点,直线y=x为C的一条渐近线求双曲线C的方程24在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为(4,),判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值。高港区第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题2 【答案】【解析】解析:选B.如图,设E、F在平面ABCD上的射影分别为P,Q,过P,Q分别作GHMNAD交AB于G,M,交DC于H,N,连接EH、GH、FN、MN,则平面EGH与平面FMN将原多面体分成四棱锥EAGHD与四棱锥FMBCN与直三棱柱EGHFMN.由题意得GHMNAD3,GMEF2,EPFQ1,AGMBABGM2,所求的体积为V(S矩形AGHDS矩形MBCN)EPSEGHEF(23)13125立方丈,故选B.3 【答案】A【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:,解得,故选A考点:棱台的结构特征4 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题5 【答案】A【解析】解:当x0时,x20,则0“x0”是“0”成立的充分条件;但0,x20,时x0不一定成立“x0”不是“0”成立的必要条件;故“x0”是“0”成立的充分不必要条件;故选A【点评】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系6 【答案】D【解析】解:y=()=,k=y|x=1=2l:y+1=2(x1),则y=2x+1故选:D7 【答案】A【解析】解:当x2时,x1成立,即x1是x2的必要不充分条件是,x1是x2的既不充分也不必要条件,x3是x2的充分条件,x3是x2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础8 【答案】A【解析】解:抛物线f(x)=x2+bx+3开口向上,以直线x=为对称轴,若函数y=x2+bx+3在0,+)上单调递增函数,则0,解得:b0,故选:A【点评】本题考查二次函数的性质和应用,是基础题解题时要认真审题,仔细解答9 【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D10【答案】A【解析】解:A=x|a1xa+2B=x|3x5AB=BAB解得:3a4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题11【答案】A【解析】解:设A(x1,x12),B(x2,x22),将直线与抛物线方程联立得,消去y得:x2mx1=0,根据韦达定理得:x1x2=1,由=(x1,x12),=(x2,x22),得到=x1x2+(x1x2)2=1+1=0,则,AOB为直角三角形故选A【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直12【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题二、填空题13【答案】0.3【解析】离散型随机变量的期望与方差【专题】计算题;概率与统计【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550600)【解答】解:某校高三学生成绩(总分750分)近似服从正态分布,平均成绩为500分,正态分布曲线的对称轴为x=500,P(400450)=0.3,根据对称性,可得P(550600)=0.3故答案为:0.3【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键14【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键15【答案】-1【解析】试题分析:由于,所以只能,所以。考点:集合相等。16【答案】2:1 【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为: =rl圆柱的侧面积为:2rl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:117【答案】 【解析】解:()0+(2)3=1+(2)2=1+=故答案为:18【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用三、解答题19【答案】 【解析】(1)证明:取ED的中点为O,由题意可得AED为等边三角形,AC2=AO2+OC2,AOOC,又AOED,EDOC=O,AO面ECD,又AOAED,平面AED平面BCDE;(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,1,0),A(0,0,),C(,0,0),B(,2,0),设面EAC的法向量为,面BAC的法向量为由,得,由,得,二面角EACB的余弦值为2016年5月3日20【答案】(1)(为参数);(2).【解析】试题解析:(1)将曲线(为参数),化为,由伸缩变换化为,代入圆的方程,得到,可得参数方程为;考点:坐标系与参数方程21【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m22【答案】(1) ,;(2).【解析】试题解析:(1)由题意,圆方程为,且,圆与直线及轴都相切,圆方程为,化为一般方程为,.(2)圆心到直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 61754-13:2024 CMV EN Fibre optic interconnecting devices and passive components - Fibre optic connector interfaces - Part 13: Type FC-PC connector family
- 古诗三首登鹳雀楼、静夜思、望庐山瀑布解析:小学语文教学教案
- 写景色的变化:从冬到春的作文15篇
- 生产原材料采购与库存管理表
- 应急执法考试试题及答案
- 音乐理论考试试题及答案
- 移动司机考试试题及答案
- 宜良农机考试试题及答案
- 六一典礼活动方案
- 六一古筝活动方案
- 第五单元《面积》(教学设计)-【大单元教学】三年级数学下册同步备课系列(人教版)
- 掼蛋考试试题及答案
- GA/T 2159-2024法庭科学资金数据清洗规程
- 企业风险管理-战略与绩效整合(中文版-雷泽佳译)
- 业务学习踝关节骨折
- 《医疗机构重大事故隐患判定清单(试行)》知识培训
- 浙江省杭州市2024年中考英语真题(含答案)
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 羽毛球社团教案(共17页)
- 下肢静脉曲张诊断及治疗进展PPT学习教案
- 装修管理规则-城市综合体---成都租户指引
评论
0/150
提交评论