



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科教育论文-一次作业评讲中的研究性学习这是一次作业中的一道题:问题:是否存在同时满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由:(1)渐近线为x+2y=0及x-2y=0;(2)点A(5,0)到双曲线上动点P的距离的最小值为.这是一道流传较广的试题,题目综合性较强,对学生的能力要求较高.不出所料,作业收上来后,能够完整做对的学生为数寥寥.然而我又欣喜地看到,尽管有些学生还不能完整地解决,但是如果循着学生的思路对此题进行重新审视,发现只要发动学生对这些思路进行评判、再探索,这其实是一个很好的研究性学习素材.于是我专门用了一节课对此题作了评讲.我先出示了学生T对此题的部分解答:解:当双曲线焦点在x轴上时(焦点在y轴上的情况他还未考虑出),易知双曲线的右顶点到点A的距离最短.由双曲线渐近线为,可设双曲线方程为(b0).双曲线的右顶点为(2b,0),.故.因此这样的双曲线存在,且其方程为:.尽管是部分解答,却也够“简洁”了!当同学们看完解答后,一时竟没有学生提出疑议显然,他们也认为解答中用到的一个“事实”:双曲线的右顶点到点A的距离最短无疑是正确的.经过一番思索后,终于有思维慎密、严谨的同学对此提出了置疑,然而他也一下子拿不出什么根据.这时我适时地启发道,数学讲求的是严密,有时光凭猜测、估计,还不能揭示数学现象的本质特征,这个问题中,究竟是不是双曲线的右顶点到点A的距离最短,并不是“易知”的,它还需要我们的精确论证.那么,我们能否对此问题作一研究呢?同学们一个个情绪高涨,跃跃欲试.不久,几个成绩较好的学生拿出了他们的研究成果:设双曲线方程为(0),A(m,0)(m0)为x轴正半轴上一点,设P(x,y)为双曲线上任一点,其中.则=.(1)若,亦即,则当时,最小.(2)若即0,亦即,则当时,最小.至此问题已得到解决,当点A的横坐标满足0时,双曲线的右顶点到点A的距离最短(此时点A有可能在右顶点左侧,也有可能在右顶点右侧,在右顶点右侧时);当时,双曲线上有两点到点A的距离最短(其横坐标均为.依据此结果重新审视学生T的解答,可知答案是正确的,而当时,点A在双曲线右顶点右侧,若右顶点到点A距离最短,则必须满足0!问题已经解决,但我并没有就此止步,又向学生提出了几个研究性问题:判别式等于0时,圆锥曲线与圆锥曲线是否一定相切(假设已定义它们的相切)?怎样根据方程组讨论圆锥曲线与圆锥曲线的位置关系?几个问题刚提出来,下课铃也响了,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训课件分类
- 营养师实操题
- 油漆工艺危险源辨识与风险评价信息表
- 英语单词大全3500
- 跨国公司内部股权调整与员工持股计划协议
- 电力采购合同谈判与电力市场改革政策适应
- 医院装修技术方案文本
- 楼盘研发方案
- 知识产权孵化器厂房转租及知识产权运营合同
- 正规公司税务运作方案
- 2025年初级消防设施操作员职业技能鉴定考试试卷真题(后附专业解析)
- 医疗质量管理培训
- 肾癌的护理课件教学
- (零诊)成都市2023级(2026届)高三高中毕业班摸底测试语文试卷(含答案)
- 2025扬州辅警考试真题
- 股份分配与业绩对赌协议合同
- 病媒生物媒介昆虫的地理分布与疾病传播的时空特征研究-洞察阐释
- 个人形象管理课程课件
- 2025年 黑龙江省公安厅招聘辅警笔试考试试卷附答案
- vte护理管理制度
- 自助台球安全管理制度
评论
0/150
提交评论