全国通用高考数学复习教师用书专题四至专题八文.docx_第1页
全国通用高考数学复习教师用书专题四至专题八文.docx_第2页
全国通用高考数学复习教师用书专题四至专题八文.docx_第3页
全国通用高考数学复习教师用书专题四至专题八文.docx_第4页
全国通用高考数学复习教师用书专题四至专题八文.docx_第5页
已阅读5页,还剩138页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲空间几何体中的计算高考定位1.以三视图为载体,考查空间几何体面积、体积的计算;2.考查空间几何体的侧面展开图及简单的组合体问题.真 题 感 悟 1.(2016全国卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17 B.18 C.20 D.28解析由题知,该几何体的直观图如图所示,它是一个球(被过球心O且互相垂直的三个平面)切掉左上角的后得到的组合体,其表面积是球面面积的和三个圆面积之和,易得球的半径为2,则得S42232217,故选A.答案A2.(2016全国卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20 B.24 C.28 D.32解析由三视图可知,组合体的底面圆的面积和周长均为4,圆锥的母线长l4,所以圆锥的侧面积为S锥侧448,圆柱的侧面积S柱侧4416,所以组合体的表面积S816428,故选C.答案C3.(2016全国卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.1836B.5418C.90 D.81解析由题意知,几何体为平行六面体,边长分别为3,3,3,几何体的表面积S3623323325418.答案B4.(2016北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为_.解析由三视图知该四棱柱为直四棱柱,底面积S,高h1,所以四棱柱体积VSh1.答案考 点 整 合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,高平齐,宽相等.3.空间几何体的两组常用公式(1)柱体、锥体、台体的侧面积公式:S柱侧ch(c为底面周长,h为高);S锥侧ch(c为底面周长,h为斜高);S台侧(cc)h(c,c分别为上下底面的周长,h为斜高);S球表4R2(R为球的半径).(2)柱体、锥体和球的体积公式:V柱体Sh(S为底面面积,h为高);V锥体Sh(S为底面面积,h为高);V球R3.热点一以三视图为载体的几何体的表面积与体积的计算微题型1以三视图为载体求几何体的表面积【例11】 (1)(2015安徽卷)一个四面体的三视图如图所示,则该四面体的表面积是()A.1 B.12 C.2 D.2(2)(2016浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析(1)由几何体的三视图可知空间几何体的直观图如图所示.其表面积S表2212()22,故选C.(2)由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm,下面长方体是底面边长为4 cm,高为2 cm,其直观图如右图:其表面积S62224242422280(cm2).体积V22244240(cm3).答案(1)C(2)8040探究提高(1)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理.微题型2以三视图为载体求几何体的体积【例12】 (1)(2016郑州模拟)已知一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.(4)(2)(2016衡水大联考)如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为()A. B.8C. D.解析(1)由该几何体的三视图,可知该几何体是由底面半径为1、高为、母线长为2的半圆锥,和底面为等腰三角形(底边长为2、高为2)、高为的三棱锥拼成的一个组合体.所以此组合体的体积为1222.(2)由图知此几何体为边长为2的正方体裁去一个三棱锥.所以此几何体的体积为222122.故选C.答案(1)C(2)C探究提高解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.微题型3与球有关的体积问题【例13】 (1)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36 B.64 C.144 D.256(2)已知三棱锥SABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC2,则此三棱锥的体积为()A. B. C. D.解析(1)如图,要使三棱锥OABC即COAB的体积最大,当且仅当点C到平面OAB的距离,即三棱锥COAB底面OAB上的高最大,其最大值为球O的半径R,则VOABC最大为SOABRR2RR336,所以R6,得S球O4R2462144,选C.(2)法一(排除法)VSABC2,排除B、C、D,选A.法二(直接法):在RtASC中,AC1,SAC90,SC2,所以SA.同理,SB.过A点作SC的垂线交SC于D点,连接DB,因为SACSBC,所以BDSC,ADBD,故SC平面ABD,且ABD为等腰三角形.因为ASC30,故ADSA,则ABD的面积为1,则三棱锥SABC的体积为2.答案(1)C(2)A探究提高涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【训练1】 (1)(2016成都诊断)某几何体的三视图如图所示,则该几何体的体积为()A.2 B.C. D.(2)(2016西安模拟)某几何体的三视图如图所示,则该几何体的表面积为()A.54 B.60 C.66 D.72解析(1)该几何体由一个圆柱和一个半圆锥组成,其体积为V1221212.(2)还原为如图所示的直观图,S表SABCSDEFS矩形ACFDS梯形ABEDS梯形CBEF343553(25)4(25)560.答案(1)B(2)B热点二多面体的体积计算微题型1多面体体积的间接计算【例21】 (1)如图所示,ABCD是正方形,PA平面ABCD,E,F分别是AC,PC的中点,PA2,AB1,则三棱锥CPED的体积为_.(2)如图,在棱长为6的正方体ABCDA1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E4,C1F3,连接EF,FB,DE,BD则几何体EFC1DBC的体积为()A.66 B.68C.70 D.72解析(1)PA平面ABCD,PA是三棱锥PCED的高,PA2.ABCD是正方形,E是AC的中点,CED是等腰直角三角形.AB1,故CEED,SCEDCEED.故VCPEDVPCEDSCEDPA2.(2)如图,连接DF,DC1,那么几何体EFC1DBC被分割成三棱锥DEFC1及四棱锥DCBFC1,那么几何体EFC1BDC的体积为V346(36)66125466.故所求几何体EFC1DBC的体积为66.答案(1)(2)A探究提高(1)求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法求解.微题型2多面体体积的直接计算【例22】 (2016武汉模拟)如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1平面A1CD;(2)设AA1ACCB2,AB2,求三棱锥CA1DE的体积.(1)证明连接AC1交A1C于点F,则F为AC1中点.又D是AB中点,连接DF,则BC1DF.因为DF平面A1CD,BC1平面A1CD,所以BC1平面A1CD.(2)解因为ABCA1B1C1是直三棱柱,所以AA1CD.由已知ACCB,D为AB的中点,所以CDAB.又AA1ABA,于是CD平面ABB1A1.由AA1ACCB2,AB2得ACB90,CD,A1D,DE,A1E3,故A1D2DE2A1E2,即DEA1D.所以VCA1DE1.探究提高有关多面体的体积计算首先要熟悉几何体的特征,其次运用好公式,作好辅助线等.【训练2】 (2016豫南九校联考)如图,四棱锥PABCD中,PA底面ABCD,PA2,BCCD2,ACBACD.(1)求证:BD平面PAC;(2)若侧棱PC上的点F满足PF7FC,求三棱锥PBDF的体积.(1)证明因BCCD,即BCD为等腰三角形,又ACBACD,故BDAC.因为PA底面ABCD,BD平面ABCD,所以PABD.从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD平面PAC.(2)解三棱锥PBCD的底面BCD的面积SBCDBCCDsin BCD22sin.由PA底面ABCD,得VPBCDSBCDPA22.由PF7FC,得三棱锥FBCD的高为PA,故VFBCDSBCDPA2,所以VPBDFVPBCDVFBCD2.1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)注意几何体的表面积与侧面积的区别,侧面积只是表面积的一部分,不包括底面积,而表面积包括底面积和侧面积.2.球的简单组合体中几何体度量之间的关系,如棱长为a的正方体的外接球、内切球、棱切球的半径分别为a,a.3.锥体体积公式为VSh,在求解锥体体积中,不能漏掉.一、选择题1.(2015全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B.C. D.解析如图,由题意知,该几何体是正方体ABCDA1B1C1D1被过三点A、B1、D1的平面所截剩余部分,截去的部分为三棱锥AA1B1D1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为.选D.答案D2.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90 cm2B.129 cm2C.132 cm2D.138 cm2解析该几何体如图所示,长方体的长、宽、高分别为6 cm,4 cm,3 cm,直三棱柱的底面是直角三角形,边长分别为3 cm,4 cm,5 cm,所以表面积S(2462343633)138(cm2),故选D.答案D3.(2016皖南八校联考)某几何体的三视图如图所示,则该几何体的体积为()A. B.C.2 D.2解析这是一个三棱锥与半个圆柱的组合体,V1221,选A.答案A4.(2015全国卷)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620,则r()A.1 B.2C.4 D.8解析由题意知,设几何体由一个半圆柱和一个半球拼接而成,2r2r2r2r2r24r24r25r21620,r2.答案B5.三棱锥SABC的所有顶点都在球O的表面上,SA平面ABC,ABBC,又SAABBC1,则球O的表面积为()A. B.C.3 D.12解析如图,因为ABBC,所以AC是ABC所在截面圆的直径,又因为SA平面ABC,所以SAC所在的截面圆是球的大圆,所以SC是球的一条直径.由题设SAABBC1,由勾股定理可求得:AC,SC,所以球的半径R,所以球的表面积为43.答案C二、填空题6.一个几何体的三视图如图所示(单位:m),则该几何体的体积为_m3.解析由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V2121122(m3).答案7.(2016四川卷)已知某三棱锥的三视图如图所示,则该三棱锥的体积是_.解析由三视图可大致画出三棱锥的直观图如图,由正、俯视图可知,ABC为等腰三角形,且AC2,AC边上的高为1,SABC21.由侧视图可知:三棱锥的高h1,VSABCSABCh.答案8.(2016成都诊断)在三棱柱ABCA1B1C1中,BAC90,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是_.解析由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,VPA1MNVA1PMN,又AA1平面PMN,VA1PMNVAPMN,VAPMN1,故VPA1MN.答案三、解答题9.(2015全国卷)如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF.如图:(2)如图,作EMAB,垂足为M,则AMA1E4,EB112,EMAA18.因为四边形EHGF为正方形,所以EHEFBC10.于是MH6,AH10,HB6.故S四边形A1EHA(410)856,S四边形EB1BH(126)872.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为(也正确).10.(2015全国卷)如图,四边形ABCD为菱形,G是AC与BD的交点,BE平面ABCD.(1)证明:平面AEC平面BED;(2)若ABC120,AEEC,三棱锥EACD的体积为,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以ACBD.因为BE平面ABCD,AC平面ABCD,所以ACBE.因为BEBDB,故AC平面BED.又AC平面AEC,所以平面AEC平面BED.(2)解设ABx,在菱形ABCD中,由ABC120,可得AGGCx,GBGD.因为AEEC,所以在Rt AEC中,可得EGx.由BE平面ABCD,BG平面ABCD知BEBG,故EBG为直角三角形,可得BEx.由已知得,三棱锥EACD的体积VEACDACGDBEx3.故x2.从而可得AEECED.所以EAC的面积为3,EAD的面积与ECD的面积均为.故三棱锥EACD的侧面积为32.11.(2016岳阳4月模拟)如图,三棱柱ABCA1B1C1中,AA1BC,A1BBB1.(1)求证:A1CCC1;(2)若AB2,AC,BC,问AA1为何值时,三棱柱ABCA1B1C1体积最大,并求此最大值.(1)证明由AA1BC知BB1BC,又BB1A1B,且BCA1BB,故BB1平面BCA1,又A1C平面BCA1,即BB1A1C,又BB1CC1,所以A1CCC1.(2)解法一设AA1x,在RtA1BB1中,A1B.同理,A1C.在A1BC中,cos BA1C,sin BA1C,所以SA1BCA1BA1Csin BA1C.从而三棱柱ABCA1B1C1的体积VS直lSA1BCAA1,因x,故当x,即AA1时,体积V取到最大值.法二如图,过A1作BC的垂线,垂足为D,连接AD.由AA1BC,A1DBC,AA1A1DA1,故BC平面AA1D,BCAD,又BAC90,所以SABCADBCABAC,所以AD.设AA1x,在RtAA1D中,A1D,SA1BCA1DBC.从而三棱柱ABCA1B1C1的体积VS直lSA1BCAA1.因x,故当x,即AA1时,体积V取到最大值.第2讲空间中的平行与垂直的证明问题高考定位1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题;2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.真 题 感 悟 (2016全国卷)如图,已知正三棱锥PABC的侧面是直角三角形,PA6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(1)证明:G是AB的中点;(2)作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以ABPD.因为D在平面PAB内的正投影为E,所以ABDE.且PDDED,所以AB平面PED,又PG平面PED,故ABPG.又由已知可得,PAPB,从而G是AB的中点.(2)解在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PBPA,PBPC,又EFPB,所以EFPA,EFPC,PAPCP,因此EF平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CDCG.由题设可得PC平面PAB,DE平面PAB,所以DEPC,因此PEPG,DEPC.由已知,正三棱锥的侧面是直角三角形且PA6,可得DE2,PE2.在等腰直角三角形EFP中,可得EFPF2.所以四面体PDEF的体积V222.考 点 整 合1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a,b,aba.(2)线面平行的性质定理:a,a,bab.(3)面面平行的判定定理:a,b,abP,a,b.(4)面面平行的性质定理:,a,bab.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m,n,mnP,lm,lnl.(2)线面垂直的性质定理:a,bab.(3)面面垂直的判定定理:a,a.(4)面面垂直的性质定理:,l,a,ala.热点一空间平行、垂直关系的证明【例1】 (2016山东卷)在如图所示的几何体中,D是AC的中点,EFDB.(1)已知ABBC,AEEC.求证:ACFB;(2)已知G,H分别是EC和FB的中点.求证:GH平面ABC.证明(1)因为EFDB,所以EF与DB确定平面BDEF,连接DE.因为AEEC,D为AC的中点,所以DEAC.同理可得BDAC.又BDDED,所以AC平面BDEF.因为FB平面BDEF,所以ACFB.(2)设FC的中点为I,连接GI,HI.在CEF中,因为G是CE的中点,所以GIEF.又EFDB,所以GIDB.在CFB中,因为H是FB的中点,所以HIBC.又HIGII,所以平面GHI平面ABC,因为GH平面GHI,所以GH平面ABC.探究提高垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练1】 如图,在四棱锥PABCD中,ABAC,ABPA,ABCD,AB2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:(1)CE平面PAD;(2)平面EFG平面EMN.证明(1)法一如图1,取PA的中点H,连接EH,DH.又因为E为PB的中点,所以EHAB,且EHAB.图1又ABCD,CDAB,所以EHCD,且EHCD.所以四边形DCEH是平行四边形.所以CEDH.又DH平面PAD,CE平面PAD,因此,CE平面PAD.法二如图2,连接CF.因为F为AB的中点,所以AFAB.图2又CDAB,所以AFCD,又AFCD,所以四边形AFCD为平行四边形.因此CFAD.又CF平面PAD,AD平面PAD,所以CF平面PAD.因为E,F分别为PB,AB的中点,所以EFPA.又EF平面PAD,PA平面PAD,所以EF平面PAD.因为CFEFF,故平面CEF平面PAD.又CE平面CEF,所以CE平面PAD.(2)因为E,F分别为PB,AB的中点,所以EFPA.又ABPA,所以ABEF.同理可证ABFG.又EFFGF,EF平面EFG,FG平面EFG,因此AB平面EFG.又M,N分别为PD,PC的中点,所以MNDC,又ABDC,所以MNAB,所以MN平面EFG.又MN平面EMN,所以平面EFG平面EMN.热点二利用平行、垂直关系判断点的存在性【例2】 (2016四川卷)如图,在四棱锥PABCD中,PACD,ADBC,ADCPAB90,BCCDAD.(1)在平面PAD内找一点M,使得直线CM平面PAB,并说明理由.(2)证明:平面PAB平面PBD.(1)解取棱AD的中点M(M平面PAD),点M即为所求的一个点,理由如下:因为ADBC,BCAD.所以BCAM,且BCAM.所以四边形AMCB是平行四边形,从而CMAB.又AB平面PAB.CM平面PAB.所以CM平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,PAAB,PACD.因为ADBC,BCAD,所以直线AB与CD相交,所以PA平面ABCD.从而PABD.连接BM,因为ADBC,BCAD,所以BCMD,且BCMD.所以四边形BCDM是平行四边形,所以BMCDAD,所以BDAB.又ABAPA,所以BD平面PAB.又BD平面PBD,所以平面PAB平面PBD.探究提高探求点的位置常常是线段的中点、三等分点等,关键是通过垂直、平行关系寻找线线平行.【训练2】 如图,三棱锥PABC中,PA平面ABC,PA1,AB1,AC2,BAC60.(1)求三棱锥PABC的体积;(2)证明:在线段PC上存在点M,使得ACBM,并求的值.(1)解由题设AB1,AC2,BAC60,可得SABCABACsin 60.由PA平面ABC,可知PA是三棱锥PABC的高,又PA1.所以三棱锥PABC的体积VSABCPA.(2)证明在平面ABC内,过点B作BNAC,垂足为N,在平面PAC内,过点N作MNPA交PC于点M,连接BM.由PA平面ABC知PAAC,所以MNAC.由于BNMNN,故AC平面MBN,又BM平面MBN,所以ACBM.在RtBAN中,ANABcosBAC,从而NCACAN,由MNPA,得.热点三平面图形翻折中的平行、垂直关系【例3】 (2016全国卷)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AECF,EF交BD于点H,将DEF沿EF折到DEF的位置.(1)证明:ACHD;(2)若AB5,AC6,AE,OD2,求五棱锥DABCFE的体积.(1)证明由已知得ACBD,ADCD,又由AECF得,故ACEF,由此得EFHD,折后EF与HD保持垂直关系,即EFHD,所以ACHD.(2)解由EFAC得.由AB5,AC6得DOBO4,所以OH1,DHDH3,于是OD2OH2(2)2129DH2,故ODOH.由(1)知ACHD,又ACBD,BDHDH,所以AC平面BHD,于是ACOD,又由ODOH,ACOHO,所以OD平面ABC.又由得EF.五边形ABCFE的面积S683.所以五棱锥DABCFE的体积V2.探究提高(1)解决折叠问题的关键是搞清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)把平面图形翻折后,经过恰当连线就能得到三棱锥、四棱锥,从而把问题转化到我们熟悉的几何体中解决.【训练3】 (2016江西八校联考)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,ADAE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图2所示的三棱锥ABCF,其中BC.(1)证明:DE平面BCF;(2)证明:CF平面ABF;(3)当AD时,求三棱锥FDEG的体积VFDEG.(1)证明在等边ABC中,ADAE,在折叠后的三棱锥ABCF中也成立.DEBC,又DE平面BCF,BC平面BCF,DE平面BCF.(2)证明在等边ABC中,F是BC的中点,AFCF.在三棱锥ABCF中,BC,BFCF,BC2BF2CF2,CFBF.又BFAFF,CF平面ABF.(3)解由(1)、(2)可知GE平面DFG,即GE为三棱锥EDFG的高.VFDEGVEDFGDGFGGE.1.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.2.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:利用等腰三角形底边中线即高线的性质;勾股定理;线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l,ala.3.在应用直线和平面平行的性质定理时,要防止出现“一条直线平行于一个平面就平行于这个平面内的所有直线”的错误.4.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.一、选择题1.(2016浙江卷)已知互相垂直的平面,交于直线l.若直线m,n满足m,n,则()A.mlB.mn C.nl D.mn解析由已知,l,l,又n,nl,C正确.故选C.答案C2.(2016山东卷)已知直线a,b分别在两个不同的平面 ,内,则“直线a和直线b相交”是“平面和平面相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若直线a和直线b相交,则平面和平面相交;若平面和平面相交,那么直线a和直线b可能平行或异面或相交,故选A.答案A3.若a,b,c为三条不同的直线,为三个不同的平面,则下列命题正确的为()A.若a,b,则ab B.若a,a,则C.若a,b,则ab D.若,则解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案C4.已知,是两个不同的平面,有下列三个条件:存在一个平面,;存在一条直线a,a,a;存在两条垂直的直线a,b,a,b.其中,所有能成为“”的充要条件的序号是()A. B. C. D.解析对于,存在一个平面,则,反之也成立,即“存在一个平面,”是“”的充要条件,所以对,可排除B、C.对于,存在两条垂直的直线a,b,则直线a,b所成的角为90,因为a,b,所以,所成的角为90,即,反之也成立,即“存在两条垂直的直线a,b,a,b”是“”的充要条件,所以对,可排除A,选D.答案D5.如图,在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,将ADB沿BD折起,使平面ABD平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是()A.平面ABD平面ABC B.平面ADC平面BDCC.平面ABC平面BDC D.平面ADC平面ABC解析在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,BDCD,又平面ABD平面BCD,且平面ABD平面BCDBD,CD平面BCD,所以CD平面ABD,又AB平面ABD,则CDAB,又ADAB,ADCDD,所以AB平面ADC,又AB平面ABC,所以平面ABC平面ADC,故选D.答案D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:PA平面MOB;MO平面PAC;OC平面PAC;平面PAC平面PBC.其中正确的命题是_(填上所有正确命题的序号).解析错误,PA平面MOB;正确;错误,否则,有OCAC,这与BCAC矛盾;正确,因为BC平面PAC.答案7.如图,在正方形ABCD中,E、F分别是BC、CD的中点,ACEFG,现在沿AE、EF、FA把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为P,则在四面体PAEF中必有_(填序号).APPEF所在平面;AGPEF所在平面;EPAEF所在平面;PGAEF所在平面.解析在折叠过程中,ABBE,ADDF保持不变. AP面PEF.答案8.(2016东北三校联考)点A、B、C、D在同一个球的球面上,ABBC,AC2,若四面体ABCD体积的最大值为,则这个球的表面积为_.解析如图所示,O为球的球心,由ABBC,AC2可知ABC,即ABC所在的小圆的圆心O1为AC的中点,故AO11,SABC1,当D为O1O的延长线与球面的交点时,D到平面ABC的距离最大,四面体ABCD的体积最大.连接OA,设球的半径为R,则DO1R,此时VDABCSABCDO1(R),解得R,故这个球的表面积为4.答案三、解答题9.(2016北京卷)如图,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA平面CEF?说明理由.(1)证明PC平面ABCD,DC平面ABCD,PCDC.又ACDC,PCACC,PC平面PAC,AC平面PAC,CD平面PAC.(2)证明ABCD,CD平面PAC,AB平面PAC,AB平面PAB,平面PAB平面PAC.(3)解棱PB上存在点F,使得PA平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,EF为PAB的中位线,EFPA.又PA平面CEF,EF平面CEF,PA平面CEF.10.(2015山东卷)如图,三棱台DEFABC中,AB2DE,G,H分别为AC,BC的中点.(1)求证:BD平面FGH;(2)若CFBC,ABBC,求证:平面BCD平面EGH. 证明(1)法一连接DG,CD,设CDGFM,连接MH.在三棱台DEFABC中,AB2DE,G为AC的中点,可得DFGC,DFGC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,所以BD平面FGH.法二在三棱台DEFABC中,由BC2EF,H为BC的中点,可得BHEF,BHEF,所以四边形HBEF为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHFH,所以平面FGH平面ABED.又因为BD平面ABED,所以BD平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GHAB.由ABBC,得GHBC.又H为BC的中点,所以EFHC,EFHC,因此四边形EFCH是平行四边形,所以CFHE.又CFBC,所以HEBC.又HE,GH平面EGH,HEGHH,所以BC平面EGH.又BC平面BCD,所以平面BCD平面EGH.11.(2016南昌5月模拟)如图所示,四边形ABCD为矩形,AD平面ABE,AEEBBC,F为CE上的点,且BF平面ACE.(1)求证:AEBE;(2)设M在线段AB上,且满足AM2MB,试在线段CE上确定一点N,使得MN平面DAE.(1)证明AD平面ABE,ADBC,BC平面ABE,AE平面ABE,AEBC.又BF平面ACE,AE平面ACE,AEBF.BCBFB,BC,BF平面BCE,AE平面BCE.又BE平面BCE,AEBE.(2)解在ABE中过M点作MGAE交BE于G点,在BEC中过G点作GNBC交EC于N点,连接MN,则由比例关系易得CNCE.MGAE,MG平面ADE,AE平面ADE,MG平面ADE.同理,GN平面ADE.又GNMGG,GN,MG平面MGN,平面MGN平面ADE.又MN平面MGN,MN平面ADE.N点为线段CE上靠近C点的一个三等分点.第1讲圆与圆锥曲线的基本问题高考定位1.圆的方程及直线与圆的位置关系是高考对本讲内容考查的重点,涉及圆的方程的求法、直线与圆的位置关系的判断、弦长问题及切线问题等;2.圆锥曲线中的基本问题一般以椭圆、双曲线、抛物线的定义、标准方程、几何性质等作为考查的重点,多为选择题或填空题.真 题 感 悟 1.(2016全国卷)设F为抛物线C:y24x的焦点,曲线y(k0)与C交于点P,PFx轴,则k()A. B.1 C. D.2解析由题可知抛物线的焦点坐标为(1,0),由PFx轴知,|PF|2,所以P点的坐标为(1,2),代入曲线y(k0)得k2,故选D.答案D2.(2016山东卷)已知圆M:x2y22ay0(a0)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A.内切 B.相交 C.外切 D.相离解析圆M:x2(ya)2a2,圆心坐标为M(0,a),半径r1为a,圆心M到直线xy0的距离d,由几何知识得()2a2,解得a2.M(0,2),r12.又圆N的圆心坐标N(1,1),半径r21,|MN|,r1r23,r1r21.r1r2|MN|r1r2,两圆相交,故选B.答案B3.(2016全国卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A. B. C. D.解析如图,由题意得,BFa,OFc,OBb,OD2bb.在RtOFB中,|OF|OB|BF|OD|,即cbab,故椭圆离心率e,故选B.答案B4.(2016全国卷)设直线yx2a与圆C:x2y22ay20相交于A,B两点,若|AB|2,则圆C的面积为_.解析圆C:x2y22ay20,即C:x2(ya)2a22,圆心为C(0,a),C到直线yx2a的距离为d.又由|AB|2,得a22,解得a22,所以圆的面积为(a22)4.答案4考 点 整 合1.圆的方程(1)圆的标准方程:(xa)2(yb)2r2(r0),圆心为(a,b),半径为r.(2)圆的一般方程:x2y2DxEyF0(D2E24F0),圆心为,半径为r.2.直线与圆相关问题的两个关键点(1)三个定理:切线的性质定理,切线长定理,垂径定理.(2)两个公式:点到直线的距离公式d,弦长公式|AB|2(弦心距d).3.圆锥曲线的定义(1)椭圆:|MF1|MF2|2a(2a|F1F2|);(2)双曲线:|MF1|MF2|2a(2a|F1F2|);(3)抛物线:|MF|d(d为M点到准线的距离).4.圆锥曲线的标准方程(1)椭圆:1(ab0)(焦点在x轴上)或1(ab0)(焦点在y轴上);(2)双曲线:1(a0,b0)(焦点在x轴上)或1(a0,b0)(焦点在y轴上);(3)抛物线:y22px,y22px,x22py,x22py(p0).5.圆锥曲线的几何性质(1)椭圆:e;(2)双曲线:e;渐近线方程:yx或yx;(3)抛物线:设y22px(p0),C(x1,y1),D(x2,y2)为抛物线上的点,F为其焦点.焦半径|CF|x1;过焦点的弦长|CD|x1x2p;x1x2,y1y2p2.热点一直线与圆有关问题 微题型1求圆的方程【例11】 (1)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A.(x2)2(y2)23 B.(x2)2(y)23C.(x2)2(y2)24 D.(x2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论