电力晶体管(GTR)驱动电路研究.doc_第1页
电力晶体管(GTR)驱动电路研究.doc_第2页
电力晶体管(GTR)驱动电路研究.doc_第3页
电力晶体管(GTR)驱动电路研究.doc_第4页
电力晶体管(GTR)驱动电路研究.doc_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验一 电力晶体管(GTR)驱动电路研究 一实验目的1掌握GTR对基极驱动电路的要求2掌握一个实用驱动电路的工作原理与调试方法二实验内容1连接实验线路组成一个实用驱动电路2PWM波形发生器频率与占空比测试3光耦合器输入、输出延时时间与电流传输比测试4贝克箝位电路性能测试5过流保护电路性能测试三实验设备和仪器1MCL-07电力电子实验箱2双踪示波器3万用表4教学实验台主控制屏四实验方法1检查面板上所有开关是否均置于断开位置2PWM波形发生器频率与占空比测试(1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D,填入表21。表21幅度(Vp-p)宽度(ms)周期(ms)频率f(kHz)占空比DS2:通RP:右旋S2:通RP:左旋S2:断RP:右旋S2:断RP:左旋(2)将电位器RP左旋到底,测出f与D,填入表21。(3)将开关S2打向“断”,测出这时的f与D,填入表21。(4)电位器RP顺时针旋到底,测出这时的f与D,填入表21(5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。3光耦合器特性测试(1)输入电阻为R1=1.6KW时的开门,关门延时时间测试a将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。GTR :1PWM:1GTR:6PWM:2GTR:3GTR:5GTR:9GTR:7GTR:6GTR:11bGTR单元的开关S1合向“ ”,用双踪示波器观察输入“1”与“6”及输出“7”与“11”之间波形,记录开门时间ton(含延迟时间td和下降时间tf)以及关门时间toff(含储存时间ts和上升时间tr),填入表22。表22 R=1.6ktdtftontstrtoff(2)输入电阻为R2=150W时的开门,关门延时时间测试将GTR单元的“3”与“5”断开,并连接“4”与“5”, 调节电位器RP顺时针旋到底(使RP短接),其余同上,记录开门、关门时间,填入表23。表23 R=150tdtftontstrtoff(3)输入加速电容对开门、关门延时时间影响的测试断开GTR单元的“4”和“5”,将“2”、“3”与“5”相连,即可测出具有加速电容时的开门、关门时间,填入表24。表24 接有加速电容tdtftontstrtoff(4)输入、输出电流传输比(CTR)测定电流传输比定义为CTR=输出电流/输入电流GTR单元的开关S1合向“5V”,S2打向“通”,连接GTR的“6”和PWM波形发生器的“2”,分别在GTR单元的“4”和“5”以及“9”与“7”之间串入直流毫安表,电位器RP左旋到底,测量光耦输入电流Iin、输出电流Iout。改变RP(逐渐右旋),分别测量5-6组光耦输入,输出电流,填入表25。表25 输入、输出电流传输比(CTR)测定Iin(mA)Iout(mA)CTR4驱动电路输入,输出延时时间测试GTR单元的开关S1合向“ ”, 将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”、“8”,即按照以下表格的说明连线。GTR :1PWM:1GTR:6PWM:2GTR:3GTR:5GTR:9GTR:7GTR:6GTR:11 GTR:8用双踪示波器观察GTR单元输入“1”与“6”及驱动电路输出“14”与“11”之间波形,记录驱动电路的输入,输出延时时间。td=5贝克箝位电路性能测试(1)不加贝克箝位电路时的GTR存贮时间测试。GTR单元的开关S1合向“ ”, 将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的”2“、“3”与“5”,“9”与“7”,“14”与“19”,“29”与“21”,以及GTR单元的“8”、“11”、“18”与主回路的“4”,GTR单元的“22”与主回路的“1”,即按照以下表格的说明连线。GTR :1PWM:1GTR:6PWM:2GTR:3GTR:2GTR:5GTR:9GTR:7GTR:8GTR:11 GTR:18主回路:4GTR:14GTR:19GTR:29GTR:21GTR:22主回路:1用双踪示波器观察基极驱动信号ub(“19”与“18”之间)及集电极电流ic(“22”与“18”之间)波形,记录存贮时间ts。ts=(2)加上贝克箝位电路后的GTR存贮时间测试在上述条件下,将20与14相连,观察与记录ts的变化。ts=6过流保护性能测试在实验5接线的基础上接入过流保护电路,即断开“8”与“11”的连接,将“36”与“21”、“37”与“8”相连,开关S3放在“断”位置。用示波器观察“19”与“18”及“21”与“18”之间波形,将S3合向“通”位置,(即减小比较器的比较电压,以此来模拟采样电阻R8两端电压的增大),此时过流指示灯亮,并封锁驱动信号。将S3放到断开位置,按复位按钮,过流指示灯灭,即可继续进行试验。五实验报告1画出PWM波形,列出PWM波形发生器S2在“通”与“断”位置时的频率f与最大,最小占空比。2画出光耦合器在不同输入电阻及带有加速电容时的输入、输出延时时间曲线,探讨能缩短开门、关门延时时间的方法。3列出光耦输入、输出电流,并画出电流传输比曲线。4列出有与没有贝克箝位电路时的GTR存贮时间ts,并说明使用贝克箝位电路能缩短存贮时间ts的物理原因以及对贝克箝位二极管V1的参数选择要求。5试说明过流保护电路的工作原理。6实验的收获,体会与改进意见。六思考题1波形发生器中R1=160,RP=1k,R2=3k,C1=0.022uF,C2=0.22uF,试对所测的f、Dmax、Dmin与理论值作一比较,能否分析一下两者相差的原因?2实验中的光耦为TLP521,试对实测的开门、关门延时时间与该器件的典型延时时间作一比较,能否分析一下两者相差的原因。3试比较波形发生器输出与驱动电路输出处的脉冲占空比,并分析两者相差的原因,你能否提出一种缩小两者差异的电路方案。4根据实测的光耦电流传输比以及尽量短的开关门延时时间,请对C1、R1及R3等参数作出选择。实验二 功率场效应晶体管(MOSFET)特性与驱动电路研究一实验目的:1熟悉MOSFET主要参数的测量方法2掌握MOSEET对驱动电路的要求3掌握一个实用驱动电路的工作原理与调试方法二实验内容1MOSFET主要参数:开启阀值电压VGS(th),跨导gFS,导通电阻Rds 输出特性ID=f(Vsd)等的测试2驱动电路的输入,输出延时时间测试.3电阻与电阻、电感性质负载时,MOSFET开关特性测试4有与没有反偏压时的开关过程比较5栅-源漏电流测试三实验设备和仪器1MCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分2双踪示波器3毫安表4电流表5电压表四实验方法1MOSFET主要参数测试(1)开启阀值电压VGS(th)测试开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流ID=1mA)的最小栅源电压。在主回路的“1”端与MOS 管的“25”端之间串入毫安表,测量漏极电流ID,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表,测量MOS管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。读取67组ID、Vgs,其中ID=1mA必测,填入表26。表26ID(mA)1Vgs(V)(2)跨导gFS测试双极型晶体管(GTR)通常用hFE()表示其增益,功率MOSFET器件以跨导gFS表示其增益。跨导的定义为漏极电流的小变化与相应的栅源电压小变化量之比,即gFS=ID/VGS。典型的跨导额定值是在1/2额定漏极电流和VDS=15V下测得,受条件限制,实验中只能测到1/5额定漏极电流值。根据表26的测量数值,计算gFS。(3)转移特性IDf(VGS)栅源电压Vgs与漏极电流ID的关系曲线称为转移特性。根据表26的测量数值,绘出转移特性。 (4)导通电阻RDS测试导通电阻定义为RDS=VDS/ID将电压表接至MOS 管的“25”与“23”两端,测量UDS,其余接线同上。改变VGS 从小到大读取ID与对应的漏源电压 VDS,测量5-6组数值,填入表27。表27ID(mA)1VDS(V)(5)IDf(VSD)测试IDf(VSD)系指VGS0时的VDS特性,它是指通过额定电流时,并联寄生二极管的正向压降。a在主回路的“3”端与MOS管的“23” 端之间串入安培表,主回路的“4”端与MOS管的“25”端相连,在MOS管的“23”与“25”之间接入电压表,将RP右旋转到底,读取一组ID与VSD的值。b将主回路的“3”端与MOS管的“23”端断开,在主回路“1”端与MOS管的“23”端之间串入安培表,其余接线与测试方法同上,读取另一组ID与VSD的值。c将“1”端与“23”端断开,在在主回路“2”端与“23”端之间串入安培表,其余接线与测试方法同上,读取第三组ID与VSD的值。2快速光耦6N137输入、输出延时时间的测试将MOSFET单元的输入“1”与“4”分别与PWM波形发生器的输出“1”与“2”相连,再将MOSFET单元的“2”与“3”、“9”与“4”相连,用双踪示波器观察输入波形(“1”与“4”)及输出波形(“5”与“9”之间),记录开门时间ton、关门时间toff。ton= ,toff=3驱动电路的输入、输出延时时间测试在上述接线基础上,再将“5”与“8”、“6”与“7”、“10”、“11”与“12”、“13”、“14”与“16”相连,用示波器观察输入“1”与“4”及驱动电路输出“18”与“9”之间波形,记录延时时间toff。4电阻负载时MOSFET开关特性测试(1)无并联缓冲时的开关特性测试在上述接线基础上,将MOSFET单元的“9”与“4”连线断开,再将“20”与“24”、22”与“23”、“21”与“9”以及主回路的“1”与“4”分别和MOSFET单元的“25”与“21”相连。用示波器观察“22”与“21”以及“24”与“21”之间波形(也可观察“22”与“21”及“25”与“21”之间的波形),记录开通时间ton与存储时间ts。ton= ,ts=(2)有并联缓冲时的开关特性测试在上述接线基础上,再将“25”与“27”、“21”与“26”相连,测试方法同上。5电阻、电感负载时的开关特性测试(1)有并联缓冲时的开关特性测试将主回路“1”与MOSFET单元的“25”断开,将主回路的“2”与MOSFET单元的“25”相连,测试方法同上。(2)无并联缓冲时的开关特性测试将并联缓冲电路断开,测试方法同上。6有与没有栅极反压时的开关过程比较(1)无反压时的开关过程上述所测的即为无反压时的开关过程。(2)有反压时的开关过程将反压环节接入试验电路,即断开MOSFET单元的“9”与“21”的相连,连接“9”与“15”,“17”与“21”,其余接线不变,测试方法同上,并与无反压时的开关过程相比较。7不同栅极电阻时的开关特性测试电阻、电感负载,有并联缓冲电路(1)栅极电阻采用R6=200时的开关特性。(2)栅极电阻采用R7=470时的开关特性。(3)栅极电阻采用R8=1.2k时的开关特性。8栅源极电容充放电电流测试电阻负载,栅极电阻采用R6,用示波器观察R6两端波形并记录该波形的正负幅值。9消除高频振荡试验当采用电阻、电感负载,无并联缓冲,栅极电阻为R6时,可能会产生较严重的高频振荡,通常可用增大栅极电阻的方法消除,当出现高频振荡时,可将栅极电阻用较大阻值的R8。五实验报告1根据所测数据,列出MOSFET主要参数的表格与曲线。2列出快速光耦6N137与驱动电路的延时时间与波形。3绘出电阻负载,电阻、电感负载,有与没有并联缓冲时的开关波形,并在图上标出ton、toff。4绘出有与没有栅极反压时的开关波形,并分析其对关断过程的影响。5绘出不同栅极电阻时的开关波形,分析栅极电阻大小对开关过程影响的物理原因。6绘出栅源极电容充放电电流波形,试估算出充放电电流的峰值。7消除高频振荡的措施与效果。8实验的收获、体会与改进意见。实验三 绝缘栅双极型晶体管(IGBT)特性与驱动电路研究一实验目的1熟悉IGBT主要参数与开关特性的测试方法。2掌握混合集成驱动电路EXB840的工作原理与调试方法。二实验内容1IGBT主要参数测试。2EXB840性能测试。3IGBT开关特性测试。4过流保护性能测试。三实验设备和仪器1MCL-07电力电子实验箱中的IGBT与PWM波形发生器部分。2双踪示波器。3毫安表4电压表5电流表6教学实验台主控制屏四实验方法1IGBT主要参数测试(1)开启阀值电压VGS(th)测试在主回路的“1”端与IGBT的“18”端之间串入毫安表,将主回路的“3”与“4”端分别与IGBT管的“14”与“17”端相连,再在“14”与“17”端间接入电压表,并将主回路电位器RP左旋到底。将电位器RP逐渐向右旋转,边旋转边监视毫安表,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。读取67组ID、Vgs,其中ID=1mA必测,填入表28。表28ID(mA)1Vgs(V) (2)跨导gFS测试在主回路的“2”端与IGBT的“18”端串入安培表,将RP左旋到底,其余接线同上。将RP逐渐向右旋转,读取ID与对应的VGS值,测量5-6组数据,填入表29。表29ID(mA)1Vgs(V)(3)导通电阻RDS测试将电压表接入“18”与“17”两端,其余同上,从小到大改变VGS,读取ID与对应的漏源电压VDS,测量5-6组数据,填入表210。表210ID(mA)1Vgs(V)2EXB840性能测试(1)输入输出延时时间测试IGBT部分的“1”与“13”分别与PWM波形发生部分的“1”与“2”相连,再将IGBT部分的“10”与“13”、与门输入“2”与“1”相连,用示波器观察输入“1”与“13”及EXB840输出“12”与“13”之间波形,记录开通与关断延时时间。ton= ,toff=(2)保护输出部分光耦延时时间测试将IGBT部分“10”与“13”的连线断开,并将“6”与“7”相连。用示波器观察“8”与“13”及“4”与“13” 之间波形,记录延时时间。(3)过流慢速关断时间测试接线同上,用示波器观察“1”与“13”及“12”与“13”之间波形,记录慢速关断时间。(4)关断时的负栅压测试断开“10”与“13”的相连,其余接线同上,用示波器观察“12”与“17”之间波形,记录关断时的负栅压值。(5)过流阀值电压测试断开“10”与“13”,“2”与“1”的相连,分别连接“2”与“3”,“4”与“5”,“6”与“7”,将主回路的“3”与“4”分别和“10”与“17”相连,即按照以下表格的说明连线。 IGBT:17 主回路:4IGBT:10主回路:3IGBT:4IGBT:5IGBT:6IGBT:7IGBT:2 IGBT:3IGBT:12IGBT:14RP左旋到底,用示波器观察“12”与“17”之间波形,将RP逐渐向右旋转,边旋转边监视波形,一旦该波形消失时即停止旋转,测出主回路“3”与“4”之间电压值,该值即为过流保护阀值电压值。(6)4端外接电容器C1功能测试供教师研究用EXB840使用手册中说明该电容器的作用是防止过流保护电路误动作(绝大部分场合不需要电容器)。aC1不接,测量“8”与“13”之间波形。b“9”与“13”相连时,测量“8”与“13” 之间波形,并与上述波形相比较。3开关特性测试(1)电阻负载时开关特性测试将“1”与“13”分别与波形发生器“1”与“2”相连,“4”与“5”,“6”与“7”,2“与”3“,“12”与“14”,“10”与“18”, “17”与“16”相连,主回路的“1”与“4”分别和IGBT部分的“18”与“15”相连。即按照以下表格的说明连线。IGBT:1PWM:1IGBT:13PWM:2IGBT:4IGBT:5IGBT:6IGBT:7IGBT:2 IGBT:3IGBT:12IGBT:14IGBT:17IGBT:16IGBT:10IGBT:18 IGBT:15 主回路:4IGBT:18主回路:1 用示波器分别观察“8”与“15”及“14”与“15”的波形,记录开通延迟时间。(2)电阻,电感负载时开关特性测试将主回路“1”与“18”的连线断开,再将主回路“2”与“18”相连,用示波器分别观察“8”与“15”及“16”与“15”的波形,记录开通延迟时间。(3)不同栅极电阻时开关特性测试将“12”与“14”的连线断开,再将“11”与“14”相连,栅极电阻从R53k改为R4=27,其余接线与测试方法同上。4并联缓冲电路作用测试(1)电阻负载,有与没有缓冲电路时观察“14”与“17”及“18”与“17”之间波形。(2)电阻,电感负载,有与没有缓冲电路时,观察波形同上。5过流保护性能测试,栅计电阻用R4在上述接线基础上,将“4”与“5”,“6”与“7”相连,观察“14”与“17”之间波形,然后将“10”与“18”之间连线断开,并观察驱动波形是否消失,过流指示灯是否发亮,待故障消除后,揿复位按钮即可继续进行试验。五实验报告1根据所测数据,绘出IGBT的主要参数的表格与曲线 。2绘出输入、输出及对光耦延时以及慢速关断等波形,并标出延时与慢速关断时间。3绘出所测的负栅压值与过流阀值电压值。4绘出电阻负载,电阻电感负载以及不同栅极电阻时的开关波形,并在图上标出tON 与tOFF。5绘出电阻负载与电阻、电感负载有与没有并联缓冲电路时的开关波形,并说明并联缓冲电路的作用。6过流保护性能测试结果,并对该过流保护电路作出评价。7实验的收获、体会与改进意见。实验四 锯齿波同步移相触发电路实验一实验目的1加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。2掌握锯齿波同步触发电路的调试方法。二实验内容 1锯齿波同步触发电路的调试。2锯齿波同步触发电路各点波形观察,分析。三实验线路及原理锯齿波同步移相触发电路主要由脉冲形成和放大,锯齿波形成,同步移相等环节组成,其原理如图2-4所示。由VD1,VD2,C1,R1等元件组成同步检测环节,其作用是利用同步电压来控制锯齿波产生的时刻和宽度。由VST1,V1,R3等元件组成的恒流源电路及V2,V3,C2等组成锯齿波形成环节。控制电压Uct,偏移电压Ub及锯齿波电压在V4基极综合叠加,从而构成移相控制环节。V5,V6构成脉冲形成放大环节,脉冲变压器输出触发脉冲。元件RP装在面板上 ,同步变压器副边已在内部接好。实验线路如图2-5所示。 图2-4四实验设备及仪器 1MCL-III 型教学实验台主控制屏 2双踪示波器 3万用表五注意事项 1双踪示波器有两个探头,可以同时测量两个信号,但这两个探头的地线都与示波器的外壳相连接,所以两个探头的地线不能同时接在某一电路的不同两点上,否则将使这两点通过示波器发生电气短路。为此,在实验中可将其中一根探头的地线取下或外包以绝缘,只使用其中一根地线。当需要同时观察两个信号时,必须在电路上找到这两个被测信号的公共点,将探头的地线接上,两个探头各接至信号处,即能在示波器上同时观察到两个信号,而不致发生意外。2为保护整流元件不受损坏,需注意实验步骤:(1) 在主电路不接通电源时,调试触发电路,使之正常工作。(2) 在控制电压Uct=0时,接通主电路电源,然后逐渐加大Uct,使整流电路投入工作。(3) 正确选择负载电阻或电感,须注意防止过流。在不能确定的情况下,尽可能选择较大的电阻或电感,然后根据电流值来调整。(4) 晶闸管具有一定的维持电流IH,只有流过晶闸管的电流大于IH,晶闸管才可靠导通。实验中,若负载电流太小,可能出现晶闸管时通时断,所以实验中,应保持负载电流不小于100mA。(5) 本实验中,因用MCL05组件中单结晶触发电路控制晶闸管,注意须断开MCL33A的内部触发脉冲。 六实验方法与步骤1将MCL-36面板上的同步电压输入与主控制屏上的U、V输出端相连,低压直流电源输入与主控制屏上的低压直流电源相连。2 将MCL-31面板上的给定Ug与MCL-36上的Uct相连。3 同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 4观察“3”“5”孔波形及输出电压UG1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。5调节脉冲移相范围a) 将MCL31的Ug输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使a=180O,观察其波形。b) 调节MCL31的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,a=180O,Uct=Umax时,a=30O,以满足移相范围a=30O180O的要求。具体实现方法:可通过双踪示波器的两个通道来对比观察,其中一个通道观察正弦波的波形,另一个通道观察脉冲,以正弦波的一个周期360度作为参考量来确定脉冲的相位。 6调节Uct,使a=60O,观察并记录U1U5及输出脉冲电压UG1K1,UG2K2的波形,并标出其幅值与宽度。7用导线连接“K1”和“K3”端,用双踪示波器观察UG1K1和UG3K3的波形,调节电位器RP3,使UG1K1和UG3K3间隔1800。MCL32TV+15V0V-15V+15V0V-15V同步电压MCL36锯齿波MCL31Ug电源控制屏低压控制电路及仪表Uct图2-5 锯齿波同步移相触发电路W七实验报告1整理,描绘实验中记录的各点波形,并标出幅值与宽度。2总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?3如果要求Uct=0时,a=90O,应如何调整?4讨论分析其它实验现象实验五 单相桥式全控整流电路实验一实验目的1了解单相桥式全控整流电路的工作原理。2研究单相桥式全控整流电路在电阻负载、电阻电感性负载及反电势负载时的工作。3熟悉MCL36锯齿波触发电路的工作。二实验内容1单相桥式全控整流电路供电给电阻负载。2单相桥式全控整流电路供电给电阻电感性负载。3单相桥式全控整流电路供电给反电势负载。三实验设备及仪器1MCLIII型教学实验台主控制屏2MCL33组件3MEL03三相可调电阻器4双踪示波器5万用表四注意事项1. 本实验中触发可控硅的脉冲来锯齿波触发电路中的脉冲,故MCL-33的内部脉冲需断开,以免造成误触发。2. 电阻RP的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。3. 电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。4. MCL-36面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30180),可尝试改变同步电压极性。5. 示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。6. 带反电势负载时,需要注意直流电动机必须先加励磁。五实验方法及步骤1按图2-6接线,检查无误后,闭合主电路电源,使锯齿波触发电路处于工作状态。观察锯齿波触发电路中各点波形是否正确,确定其输出脉冲可调的移相范围。并调节偏移电阻RP2,使Uct=0时,=90。注意观察波形时,须断开锯齿波触发电路中G1K1、G2K2、G3K3、G4K4与MCL-33的连接线。2单相桥式全控整流电路供电给电阻负载。接上电阻负载(可采用两只900电阻并联),并调节电阻负载至最大,短接平波电抗器。合上主电路电源,调节Uct,求取在不同a角(30、60、90)时整流电路的输出电压Ud=f(t),晶闸管的端电压UVT=f(t)的波形,并记录相应a时的Uct、Ud和交流输入电压U2值。若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。3单相桥式全控整流电路供电给电阻电感性负载。断开平波电抗器短接线,求取在不同a角(30、60、90)时的输出电压Ud=f(t),负载电流id=f(t)以及晶闸管端电压UVT=f(t)波形并记录相应Uct时的Ud、U2值。注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载电流不能超过0.8A,Uct从零起调。4单相桥式全控整流电路供电给反电势负载。在电路中接入直流电动机,短接平波电抗器,短接负载电阻Rd。(a)调节Uct,在a=90时,观察Ud=f(t),id=f(t)以及UVT=f(t)。注意,交流电压UUV须从0V起调,同时直流电动机必须先加励磁。(b)直流电动机回路中串入平波电抗器(L=700mH),重复(a)的观察。六实验报告1绘出单相桥式晶闸管全控整流电路供电给电阻负载情况下,当a=60,90时的Ud、UVT波形,并加以分析。2绘出单相桥式晶闸管全控整流电路供电给电阻电感性负载情况下,当a=90时的Ud、id、UVT波形,并加以分析。3作出实验整流电路的输入输出特性Ud=f(Uct),触发电路特性Uct=f(a)及Ud/U2=f(a)。4实验心得体会。实验六 单相桥式有源逆变电路实验一实验目的1加深理解单相桥式有源逆变的工作原理,掌握有源逆变条件。2了解产生逆变颠覆现象的原因。二实验内容1单相桥式有源逆变电路的波形观察。2有源逆变到整流过渡过程的观察。3逆变颠覆现象的观察。三实验设备及仪表1MCL-III型教学实验台主控制屏。2MCL33组件3MEL03三相可调电阻器4双踪示波器。5万用电表。四注意事项1本实验中触发可控硅的脉冲来锯齿波触发电路中的脉冲,故MCL-33的内部脉冲需断开,以免造成误触发。2电阻RP的调节需注意。若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。3电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。4MCL-36面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30180),可尝试改变同步电压极性。5示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。6带反电势负载时,需要注意直流电动机必须先加励磁。五实验内容及步骤1按图2-7接线,检查电路无误后,闭合主电路电源,使锯齿波触发电路处于工作状态。观察锯齿波触发电路中各点波形是否正确,确定其输出脉冲可调的移相范围。并调节偏移电阻RP2,使Uct=0时,=10。注意观察波形时,须断开锯齿波触发电路中G1K1、G2K2、G3K3、G4K4与MCL-33的连接线。2有源逆变实验调节Uct使分别等于60、90时,用示波器观察逆变电路输出电压Ud=f(t),晶闸管的端电压UVT=f(t)波形,并记录Ud和交流输入电压U2的数值。3逆变到整流过程的观察当大于90时,晶闸管有源逆变过渡到整流状态,此时输出电压极性改变,可用示波器观察此变化过程。注意,当晶闸管工作在整流时,有可能产生比较大的电流,需要注意监视。 4逆变颠覆的观察当=30时,继续减小Uct,此时可观察到逆变输出突然变为一个正弦波,表明逆变颠覆。六实验报告1画出=30、60、90时,Ud、UVT的波形。2分析逆变颠覆的原因,逆变颠覆后会产生什么后果?实验七 三相桥式全控整流电路实验一实验目的1熟悉MCL-33组件。2熟悉三相桥式全控整流电路的工作原理。3了解集成触发器的调整方法及各点波形。二实验内容1三相桥式全控整流电路供电给电阻性负载。2三相桥式全控整流电路供电给阻感性负载。三实验设备及仪器1MCL-III型教学实验台主控制屏。3MCL33组件4MEL-03可调电阻器5二踪示波器6万用表四实验方法1按图2-8接线,未上主电源之前,检查晶闸管的脉冲是否正常。(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o相同的双脉冲。(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。(3)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V2V的脉冲。注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。(4)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使a=150o。具体实现方法:可通过双踪示波器的两个通道来对比观察,其中一个通道观察正弦波的波形,另一个通道观察脉冲,以正弦波的一个周期360度作为参考量来确定脉冲的相位。 2三相桥式全控整流电路供电给电阻性负载。(1)接上负载电阻(可采用四只900欧姆两两并联后再串连)并调节电阻负载至最大,短接电抗器。检查电路无误后,闭合主电源。(2)调节给定电压Ug,用示波器观察记录a=0O 、30O、60O、90O时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和给定电压Ug的数值。3三相桥式全控整流电路供电给阻感性负载。(1)断开电抗器(可选择700mH),使电路为阻感性负载。(2)调节给定电压Ug,用示波器观察记录a=0O、30O、60O 、90O时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并记录相应的Ud和给定电压Ug的数值。 五实验报告1画出电路的移相特性Ud=f(a)曲线2作出触发电路的传输特性a=f(Uct)3绘出三相桥式全控整流电路供电给电阻负载,电阻电感性负载时,a角为0O、30O、60O 、90O 时的ud、uVT波形。实验八 单相交流调压电路实验一 实验目的1加深理解单相交流调压电路的工作原理。2加深理解交流调压感性负载时对移相范围要求。二实验内容1单相交流调压器带电阻性负载。2单相交流调压器带电阻电感性负载。三实验设备及仪器1MCL-III型教学实验台主控制屏。2MCL33组件。3MEL-03组件4二踪示波器5万用表四注意事项在电阻电感负载时,当a,a=,a三种情况下负载两端电压u和流过负载的电流i的波形。也可使a为一定值,调节电阻R的数值(改变)来观察波形。六实验报告1整理实验中记录下的各类波形2分析电阻电感负载时,a角与j角相应关系的变化对调压器工作的影响。3分析实验中出现的问题。实验九 直流斩波电路的性能研究一实验目的熟悉降压斩波电路(Buck Chopper)和升压斩波电路(Boost Chopper)的工作原理,掌握这两种基本斩波电路的工作状态及波形情况。二实验内容1SG3525芯片的调试。2降压斩波电路的波形观察及电压测试。3升压斩波电路的波形观察及电压测试。三实验设备及仪器1电力电子教学实验台主控制屏。2MCL-16组件。3MEL-03电阻箱 4万用表。5双踪示波器62A直流安培表四实验方法1SG3525的调试。原理框图见图2-10。将扭子开关S1打向“直流斩波”侧,S2电源开关打向“ON”,将“3”端和“4”端用导线短接,用示波器观察“1”端输出电压波形应为锯齿波,并记录其波形的频率和幅值。扭子开关S2扳向“OFF”,用导线分别连接“5”、“6”、“9”,用示波器观察“5”端波形,并记录其波形、频率、幅度,调节“脉冲宽度调节”电位器,记录其最大占空比和最小占空比。Dmax=Dmin=2实验接线图见图2-11。(1)切断MCL-16主电源,分别将“主电源2”的“1”端和“直流斩波电路”的“1”端相连,“主电源2”的“2”端和“直流斩波电路”的“2”端相连,将“PWM波形发生”的“7”、“8”端分别和直流斩波电路VT1的G1S1 端相连,“直流斩波电路”的“4”、“5”端串联MEL-03电阻箱 (将两组900/0.41A的电阻并联起来,顺时针旋转调至阻值最大约450),和直流安培表(将量程切换到2A挡)。(2)检查接线正确后,接通控制电路和主电路的电源(注意:先接通控制电路电源后接通主电路电源 ),改变脉冲占空比每改变一次,分别观察PWM信号的波形,MOSFET的栅源电压波形,输出电压、u0波形,输出电流i0的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(3)改变负载R的值(注意:负载电流不能超过1A),重复上述内容2。(4)切断主电路电源,断开“主电路2”和“降压斩波电路”的连接,断开“PWM波形发生”与VT1的连接,分别将“直流斩波电路”的“6”和“主电路2”的“1”相连,“直流斩波电路”的“7”和“主电路2”的“2”端相连,将VT2的G2S2分别接至“PWM波形发生”的“7”和“8”端,直流斩波电路的“10”、“11” 端,分别串联MEL-03电阻箱(两组分别并联,然后串联在一起顺时针旋转调至阻值最大约900)和直流安培表(将量程切换到2A挡)。检查接线正确后,接通主电路和控制电路的电源。改变脉冲占空比D,每改变一次,分别:观察PWM信号的波形,MOSFET的栅源电压波形,输出电压、u0波形,输出电流i0的波形,记录PWM信号占空比D,ui、u0的平均值Ui和U0。(5)改变负载R的值(注意:负载电流不能超过1A),重复上述内容4。(6)实验完成后,断开主电路电源,拆除所有导线。五注意事项:(1)“主电路电源2”的实验输出电压为15V,输出电流为1A,当改变负载电路时,注意R值不可过小,否则电流太大,有可能烧毁电源内部的熔断丝。(2)实验过程当中先加控制信号,后加“主电路电源2”。(3)做升压实验时,注意“PWM波形发生器”的“S1”一定要打在“直流斩波”,如果打在“半桥电源”极易烧毁“主电路电源2” 内部的熔断丝。六实验报告1分析PWM波形发生的原理2记录在某一占空比D下,降压斩波电路中,MOSFET的栅源电压波形,输出电压u0波形,输出电流i0的波形,并绘制降压斩波电路的Ui/Uo-D曲线,与理论分析结果进行比较

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论