CHAPTER POWER SERIES - Oocities:章- oocities电源系列.doc_第1页
CHAPTER POWER SERIES - Oocities:章- oocities电源系列.doc_第2页
CHAPTER POWER SERIES - Oocities:章- oocities电源系列.doc_第3页
CHAPTER POWER SERIES - Oocities:章- oocities电源系列.doc_第4页
CHAPTER POWER SERIES - Oocities:章- oocities电源系列.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 CHAPTER:POWER SERIES Contents 0Introduction 1Maclaurins Theorem 2Standard expansions 0 Introduction A few minutes play with a scientific calculator will show that for most values of the variable x, the values of the functions sin x, cos x, ex, ln x, and so on, are not rational numbers or recognizable irrational numbers expressible as roots. If the internal logic of a calculator or computer is limited to the basic arithmetic operations of addition, subtraction, multiplication, and division, how does it calculate the value of these and other such functions? Power series is a way of representing these functions by polynomial series which will allow us to find their respective approximate values to any desired degree of accuracy. Definition: A power series is a series of the form a0 + a1x + a2x2 +a3x3 + . . . + anxn + . . . to , where the coefficients a0, a1, a2, a3, . . . , are constants. If Sn = a0 + a1x + a2x2 +a3x3 + . . . + anxn , and if Sn S as n then the power series is said to be convergent and have a sum S. 1 Maclaurins Theorem Under certain conditions, a function f(x) can be expressed as an infinite series of ascending powers of x. Assuming that such a series exists, we may write f(x) = a0 + a1x + a2x2 +a3x3 + . . . + arxr + . . . where ai are constants. Differentiating with respect to x, we have, f(x)= a1 + 2a2x + 3a3x2 + 4a4x3 + . . . + rarxr-1 + . . . f(x)= 2a2 + 3.2a3x + 4.3a4x2 + . . . .+ r(r-1)arxr-2 + . . . f(x)= 3.2a3 + 4.3.2a4x+ . . . .+ r(r-1)(r-2)arxr-3 + . . . . f r(x)= r(r-1)(r-2) . . .3.2.ar + . . . Substituting x = 0, we find that f (0) = a0a0 = f (0) f (0) = a1a1 = f (0) f (0) = 2a2a2 = f (0) 2! f (0) = 3.2a3a3 = f (0) 3! f r(0) = r(r-1)(r-2) . . . 3.2arar = f r(0) r! Substituting these expressions for ai back into the original f(x), we get f(x) = f(0) + f (0)x + x2 + x3 + . . . + xr + . . . f (0) 2! f (0) 3! f (r) (0) r! This result is called Maclaurins Theorem and the series obtained is known as the Maclaurins Series for f(x). It is possible to find a Maclaurins series for any function f(x) whose derivatives f (0), f (0), f (0), . . . can be determined. The series must converge to the sum f(x) in order to be useful. Hence, for many functions, Maclaurins Theorem holds only within a restricted range of values of x. 2 Example 1.1 Use Maclaurins theorem to obtain the expansion for f(x) = (1+x)n where n is a real number. 1 + nx + x2 + . for - 1 1, ln = 2 ( + + + . . . ). n + 1 n - 1 1 n 1 3n3 1 5n5 Hence, calculate the value of ln 2 correct to 4 decimal places. 0.6930 Solution: 6 Example 2.4 Given that y = e cos x, show that = y cos x sin x. By further differentiation, or otherwise, show that the d2y dx2 dy dx first three non-zero terms in the Maclaurin expansion of e cos x are e ex2 + ex4. 1 2 1 6 Solution: Example 2.5 The variables x and y are related by = 2xy 1, and y = 1 at x = 0. Show that, at x = 0, = 4 and dy dx d3y dx3 = 12. Find Maclaurins series for y up to and including the term in x4, and hence find an approximation to d4y dx4 the value of y at x = 0.1, giving your answer to 3 decimal places. y = 1 x + x2 x3 + x4 + . , y 0.909 2 3 1 2 Solution: 7 Example 2.6 Given that y = exsin x, express in the form kex sin (x + ), stating clearly suitable values of k and . Express dy dx the next 2 derivatives in similar form. With the aid of Maclaurins theorem, or otherwise, express y as a series of ascending powers of x as far as the term in x3. Use this series to find an estimate of the value of e1/2 sin . k = , = ; y” = 2 ex sin (x + ); y = 2 ex sin (x + );y =x + x2 + ; 1 22 4 22 3 4 x3 3 19 24 Solution 8 Example 2.7 (J84/1/21) Given that y = e , show that 4(1 + x) + 2 = y. By further differentiation of this result, or otherwise, 1 + x d2y dx2 dy dx show that the series expansion for y in ascending powers of x up to the term in x4 is y = e (1 + x + x3 + kx4 ) where k is a constant to be determined. k = 1 2 1 48 5 384 Solution 9 SUMMARY (Power Series) Maclaurins Theorem f(x) = f(0) + f (0)x + x2 + x3 + . . . + xr + . . . f (0) 2! f (0) 3! f (r) (0) r! Standard Expansions (1 + x)n= 1 + nx + x2 + . for - 1 x 1 n(n - 1) 2! (1 + x)-1= 1 - x + x2 - x3 + . + ( - 1)r xr + .for - 1 x 1 (1 - x)-1= 1 + x + x2 + x3 + . + xr + .for - 1 x 1 ex= 1 + x + + + . + + .for all values of x x2 2! x3 3! xn n! ln (1 + x) = x - + - + .+ (- 1)r +

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论