Numerical Example for Nonlinear Systems非线性系统的数值例子.doc_第1页
Numerical Example for Nonlinear Systems非线性系统的数值例子.doc_第2页
Numerical Example for Nonlinear Systems非线性系统的数值例子.doc_第3页
Numerical Example for Nonlinear Systems非线性系统的数值例子.doc_第4页
Numerical Example for Nonlinear Systems非线性系统的数值例子.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Example for Nonlinear SystemsSolve the nonlinear system:We have:Jacobian matrix:Interactive step:1) Solve: to obtain 2) UpdateStarting point:Assuming we have,First iteration:From equation 1) From equation 2) , Second iteration:From equation 1) From equation 2) , Third iteration:From equation 1) From equation 2) Nodal FormulationAssume all resistors are voltage controlled, so Branch equations: KVL: KCL: Substituting for one obtainsThis is the generalized form of the nodal equations for a nonlinear network. To solve it by the N-R algorithm, formulate The Jacobian is obtained by applying the chain rule for differentiation:Here is a matrix which will be denoted by . Differentiation of KVL with respect to provides Sowhich can be determined directly from schematic using the stamp-like approach and replacing nonlinear components by their derivatives .Piecewise Linearization (Katzenelson method)Piecewise linear resistors: (a)Voltage controlled; (b) Current controlledEquations for the elements in the th segment arewhere and are equivalent sources (cut-off values) for -th segment. In the matrix form:The tableau equations can be written as follows:or in compact formThe subscript denotes the region in which the network operates.An error vectorThe solution is reached when we reduce to zero. The correction in the Newton-Raphson method is obtained by solvingand the new solution is provided none of the elements crossed to a new region. If this is true, is the desired final solution.If at least one element crossed into a new region, the full step is not taken and the formulaand are relative distance scaling factorswhere and are the boundary points.Fig. Obtaining the step-reducing coefficient.Since at the th step we are at the boundary of two regions, two equations are simultaneously valid:Substituting for, we haveExample 12.6.1. Consider the network with its nonlinearities described by the characteristics shown. Apply Katzentelsons algorithm by using the nodal formulation for the network. Fig. Piecewise linear network and its initial equivalent with additional sources.Let the initial nodal voltages be Denote the branch voltages by. The voltages are , In the regions shown in the figure, . This initial state of the network is shown in the figure. nonlinear resistor G1nonlinear resistor G2nonlinear resistor G3Fig. Piecewise linear resistors.Applying the steps of the algorithm:Step 2: Error vectorStep 3: SolveThe solution is Step 4: Nodal voltagesthe element voltages are All the increments are positive and all elements cross into new regions. The full step is not possible, so calculate the step-reduction coefficients. Step 5:Step 6: Scaling factorStep 7: Nodal voltageand the element voltages are Step 8: Error vectorStep 9: We are now in a new region in which , (remain unchanged) and ; the new n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论