光纤Bragg光栅测力锚杆的实验研究与应用--应用型硕士学位论文.doc_第1页
光纤Bragg光栅测力锚杆的实验研究与应用--应用型硕士学位论文.doc_第2页
光纤Bragg光栅测力锚杆的实验研究与应用--应用型硕士学位论文.doc_第3页
光纤Bragg光栅测力锚杆的实验研究与应用--应用型硕士学位论文.doc_第4页
光纤Bragg光栅测力锚杆的实验研究与应用--应用型硕士学位论文.doc_第5页
已阅读5页,还剩115页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省高校优势学科建设工程资助项目(PAPD)(SZBF2011-6-B35)江苏省“六大人才高峰”项目资助(05150012)中国矿业大学重大项目培育专项基金资助应用型硕士学位论文光纤Bragg光栅测力锚杆的实验研究与应用Experimental Research andApplication of Fiber Bragg Grating Force-measuring Anchor作 者:颜邦华 导 师:方新秋 教授王凌鹤 高工中国矿业大学二一五年五月学位论文使用授权声明本人完全了解中国矿业大学有关保留、使用学位论文的规定,同意本人所撰写的学位论文的使用授权按照学校的管理规定处理:作为申请学位的条件之一,学位论文著作权拥有者须授权所在学校拥有学位论文的部分使用权,即:学校档案馆和图书馆有权保留学位论文的纸质版和电子版,可以使用影印、缩印或扫描等复制手段保存和汇编学位论文;为教学和科研目的,学校档案馆和图书馆可以将公开的学位论文作为资料在档案馆、图书馆等场所或在校园网上供校内师生阅读、浏览。另外,根据有关法规,同意中国国家图书馆保存研究生学位论文。(保密的学位论文在解密后适用本授权书)。作者签名: 导师签名:年 月 日 年 月 日中图分类号 TD326 学校代码 10290 UDC 622 密 级 公开 中国矿业大学应用型硕士学位论文光纤Bragg光栅测力锚杆的实验研究与应用Experimental Research andApplication of Fiber Bragg Grating Force-measuring Anchor作 者 颜邦华 导 师 方新秋教授 申请学位 工程硕士专业学位 培养单位 矿业工程学院 学科专业 矿业工程 研究方向 矿山压力与岩层控制 答辩委员会主席 谢耀社教授 评 阅 人 曹胜根教授、贺宏华高工 二一五年五月论文审阅认定书研究生 颜邦华 在规定的学习年限内,按照研究生培养方案的要求,完成了研究生课程的学习,成绩合格;在我的指导下完成本学位论文,经审阅,论文中的观点、数据、表述和结构为我所认同,论文撰写格式符合学校的相关规定,同意将本论文作为学位申请论文送专家评审。 导师签字: 年 月 日致 谢在为期两年的研究生学习过程中,让我获益匪浅,无论是在知识与理论水平上,还是在为人处事与科学素养方面,都有了很大的提高。时光匆匆,两年短暂而美好的时光转瞬即逝,回忆两年来的点点滴滴,既有喜又有忧,既有欢乐也有失落,然而,总而言之,两年的生活让我从精神风貌到生活细节都有了很大的进步。方老师严谨踏实的科学作风、敢于创新的钻研精神、踏实细心的为人处事方式让我汲取了精神上的营养。两年来,他在工作与科研上一直严格要求我们,每天高效率的工作让我们畅游在知识的海洋中,牢记“有的放矢,今日事,今日毕”、“事情永远做在前面,机会只给予有准备的人”的教诲;而在生活上无微不至地细心关怀我们,使我们树立起劳逸结合、积极参加锻炼、“不怕苦、能吃苦”的优良作风,他的勤劳朴素的生活作风和温情化与制度化并举的管理方式让我们终身受用。“一日为师,终身为父”。值此论文完成之际,谨向我的导师致以衷心的感谢。在论文撰写过程中,得到了实验室师兄弟们的诸多支持和帮助,在此一并表示感谢,他们是薛广哲博士、李虎威博士、梁敏富博士、吴刚、袁保宁等。良好积极的学习氛围和其乐融融的师兄弟关系的形成都有他们的辛勤培养和浇灌,使大家能在工作时间踏实努力工作,在休息时间尽情欢乐,使我们渐渐形成认真踏实、积极进取、乐观向上的性格,为步入及融入社会打下了坚实的基础。感谢我的校外导师王凌鹤对我的语重心长的教诲,让我在专业知识水平和实践能力方面获得了较大的提高,并感谢华晋焦煤有限责任公司沙曲矿的领导们和工程技术人员对现场项目的实施给予了大力的支持和密切的配合,论文也包含他们努力的成果和智慧的结晶,在此一并表示感谢。同时表示感谢的,还有教育和培养我的母校中国矿业大学,感谢所有教育培养我的老师们,正是有了学校这个平台和老师们辛勤的教育,我才能茁壮成长!感谢所有参考文献的作者们,通过阅读他们的文章和论文,使我获益良多,在此不再一一表示感谢。最后,感谢各位专家、教授在百忙之中评审本文,由于时间仓促和作者水平有限,错误和疏漏之处在所难免,恳请批评和指正。摘 要巷道支护是矿山地下开采的一项关键技术,合理的巷道支护技术应该既能确保地下工程的安全,又具有明显的技术经济效益。现在锚杆支护技术广泛应用于矿井巷道支护。随着锚杆支护技术的广泛应用,锚杆工况状态对工程及生产的安全影响引起工程技术人员的极大关注。在不断的探索过程中,对锚杆工况检测方法的研究也取得了一定进展,积累了宝贵的经验,探索出了常用的检测手段。同时,随着科技的进步,各种新技术、新方法不断地被应用到锚杆工况的检测中来,这些技术和方法必将进一步促进锚杆支护技术的应用。现有锚杆工况检测方法无法进行远程监控、不能实现全过程监测,本文提出了采用光纤Bragg光栅传感技术进行锚杆工况检测的新方法。光纤Bragg光栅传感器是一种新型的全光纤无源器件,是用光纤Bragg光栅(FBG)作敏感元件的功能型光纤传感器。本文在参考传统电阻应变式测力锚杆的基础上,对测力锚杆结构及工作原理进行改进和优化,自主研制了光纤Bragg光栅测力锚杆。本文首先阐述了光纤Bragg光栅传感基本原理、轴向应变特性和温度传感特性、应变温度交叉敏感问题及锚杆工况的光纤光栅监测原理,并理论探索凹槽力学传递规律(以半圆形为例)及不同锚固方式(全长锚固、加长锚固、端部锚固)下的锚杆应力分布特征,为进一步的实验研究做好准备。其次针对光纤Bragg光栅测力锚杆,初步实验研究了测力锚杆的应变传递影响因素及探索了光纤Bragg光栅监测锚杆由开始变形到最终失效的受力全过程的可行性及适应性。通过理论分析和实验研究,为光纤Bragg光栅测力锚杆的开发与研制研发打下了坚固的基础,从而进一步提出了光纤Bragg光栅锚杆监测系统。光纤Bragg光栅测力锚杆及其监测系统在山西省吕梁市(华晋焦煤有限公司)沙曲矿14301轨道巷进行了调试和应用。该测力锚杆及其监测系统能够对锚杆工况进行实时、动态监测,可以实现对锚杆失效的提前预警,对巷道的进一步优化积累了原始数据,该测力锚杆及其监测系统具有良好的实用价值和广泛的推广应用前景。该论文有图59幅,表17个,参考文献120篇。关键词:光纤Bragg光栅;测力锚杆;应变传递;应力分布;监测系统XIAbstractRoadway supporting is a key technology in underground mining, reasonable roadway supporting technology should not only can ensure the safety of underground engineering, but also has obvious technical and economic benefit. Now the technology of anchor support is widely used in roadways of coal mine. With the wide application of anchor technology, effect of anchor condition on engineering and safe production caused great concern in the engineers. In the process of continuous exploration, research on detection methods for anchor condition have made great progress, and accumulated valuable experience, explore the commonly used means of detection. At the same time, with the progress of science and technology, new technology and new methods are constantly applied to detect anchor condition, these technologies and methods will further promote the application of anchor supporting technology.The existing anchor condition detection methods can not achieve remote monitoring and whole process monitoring, this paper presents a new method of anchor working condition detection using fiber Bragg grating sensing technology. Fiber Bragg grating sensor is a new type of all fiber passive device, is the use of fiber Bragg grating (FBG) as functional fiber sensor sensitive element. This paper refers to and is based on the traditional resistance strain type of force-measuring anchor to improve and optimize the structure and working principle of force-measuring anchor, independently developing a fiber Bragg grating force-measuring anchor. At first, this paper describes basic sensing principle of fiber Bragg grating, the properties of under axial strain and temperature sensing, cross sensitivity problem of strain-temperature and the principle of using fiber grating to monitor anchor condition, also explores the theory on mechanical transfer rules of groove(with semicircular for example) and stress distribution features in different ways of anchoring types(full-size grouted anchorage, lengthening anchorage and end anchorage), making preparation for further experimental research. Secondly, aiming at the fiber Bragg grating force-measuring anchor, launching a preliminary experimental study on strain transferring factors of force-measuring anchor and exploring the feasibility and adaptability of using fiber Bragg grating monitoring the whole loading process of anchor from the beginning of deformation to final failure. Through theoretical analysis and experimental research, has laid a solid foundation for developing and studying fiber Bragg grating force-measuring anchor, and further puts forward system of using fiber Bragg grating monitoring anchor. Fiber Bragg grating force-measuring anchor and its monitoring system was debugged and applied in No.14301 Rail Roadway of Shaqu mine, Lvliang city, Shanxi province. This force-measuring anchor and its monitoring system can real-time、dynamic monitoring anchor condition, early warning anchor failure, accumulating original data for further optimization of the roadway, the force-measuring anchor and its monitoring system has a good practical value and wide application prospect.There are 59 figures, 17 tables and 120 references in this paper.Keywords: fiber Bragg grating; force-measuring anchor; strain transfer; stress distribution; monitoring system目 录摘 要I目 录IV图清单VIII表清单XII1 绪论11.1 问题的提出及研究意义11.2 国内外研究现状21.3 主要研究内容、方法和技术路线162 光纤Bragg光栅传感及锚杆工况监测原理192.1 光纤Bragg光栅传感的基本原理192.2 光纤Bragg光栅的传感特性研究202.3 光纤Bragg光栅测力锚杆监测原理252.4 本章小结263 凹槽力学传递规律及不同锚固方式下的锚杆应力分布理论分析283.1 凹槽力学模型分析283.2 不同锚固方式下的锚杆应力分布403.3 本章小结494 光纤Bragg光栅测力锚杆的应变传递影响因素实验研究524.1 研究思路及意义524.2 实验材料534.3 实验内容及过程534.4 实验数据处理及分析684.5 本章小结705 光纤Bragg光栅测力锚杆的现场应用735.1 矿井概况735.2 工作面概况735.3 现场试验地点情况745.4 14301轨道巷矿压在线监测系统组成及位置布置775.5 实测结果及分析805.6 本章小结836 主要结论及展望846.1 主要结论846.2 展望85参考文献87作者简历95学位论文原创声明96学位论文数据集97ContentsAbstractIIContentsVIList of FiguresVIIIList of TablesXII1 Introduction11.1 Presentation of the Problem and Research Meaning11.2 Current Research Status of Overseas and Domestic21.3 The Main Research Contents, Methods and Technical Means162 The Principle of Fiber Bragg Grating Sensing and Anchor Working Condition Monitoring192.1 The Basic Principle of Fiber Bragg Grating Sensing192.2 Study on the Sensing Characteristic of Fiber Bragg Grating202.3 The Principle of Fiber Bragg Grating Force-measuring Anchor Monitoring252.4 Brief Summary263 Theoretical Analysis of Mechanical Transfer Law of Groove and Stress Distribution of Anchor With Different Anchoring Types283.1 Analysis of Groove Mechanical Model283.2 Stress Distribution of Anchor With Different Anchoring Types403.3 Brief Summary494 Experimental Study on the Influence Factors of Transmission of Fiber Bragg Grating Force-measuring Anchor524.1 Research Methods and Significance524.2 Eperimental Materials534.3 Content and Process of the Experiment534.4 Processing and Analysis of Experimental Data684.5 Brief Summary705 Field Application of Fiber Bragg Grating Force-measuring Anchor735.1 General Situation of the Coal Mine735.2 General Situation of the Working Face735.3 Situation of Experimental Location745.4 The Composition and Location of Online Mine Pressure Monitoring System in No.14301 Rail Roadway775.5 Measured Results and Analysis805.6 Brief Summary836 Main Conclusions and Prospects846.1 Main Conclusions846.2 Prospects85References87Author Resume95Declaration of Thesis Originality96Thesis Data Collection97图清单图序号图名称页码图1-1光纤光栅位移传感器9Figure 1-1FBG displacement sensor9图1-2光纤光栅位移传感器原理图9Figure 1-2Mechanism of FBG displacement sensor9图1-3基于压力效应的光纤光栅加速度计10Figure 1-3FBG accelerometer based on pressure action10图1-4基于双挠性梁的光纤光栅加速度计10Figure 1-4FBG accelerometer using bending beam10图1-5基于L型刚性梁的光纤光栅加速度计10Figure 1-5FBG accelerometer using L beam10图1-6双光栅加速度传感器10Figure 1-6Accelerometer based double FBG10图1-7光纤光栅拉索压力环11Figure 1-7FBG pressure sensor11图1-8光纤光栅伸长计11Figure 1-8FBG extensometer11图1-9光纤光栅曲率计结构图11Figure 1-9Sketch of FBG curvature sensor11图1-10光纤光栅土壤湿度计11Figure 1-10FBG soil hygrometer11图1-11光纤光栅倾角仪11Figure 1-11Fiber Bragg grating-based inclinometer11图1-12光纤光栅沥青计12Figure 1-12Fiber Bragg grating-based asphalt sensor12图1-13电阻应变式测力锚杆杆体结构示意图15Figure 1-13Schematic diagram of body structure of resistance strain type force-measuring anchor15图1-14CD型钢弦式测力锚杆结构15Figure 1-14The structure of CD type vibrating wire force-measuring anchor15图1-15技术路线图18Figure 1-15Technology roadmap18图2-1光纤Bragg光栅的传感原理19Figure 2-1Sensing principles of FBG19图2-2光纤Bragg光栅轴向均匀受力结构图20Figure 2-2The structure diagram of FBG under uniform axial stress20图3-1锚杆表面开半圆形凹槽封装光纤Bragg光栅的力学模型(局部放大图)29Figure 3-1The mechanical model of anchor with a semicircular groove milled on the surface of it to encapsulate fiber Bragg grating(partial enlarged detail)29图3-2光纤体及保护层受力模型29Figure 3-2The force model of optical fiber body and a protective layer29图3-3粘贴层受力模型30Figure 3-3The force model of bonding layer30图3-4锚杆表面开半圆形凹槽封装光纤Bragg光栅的等价模型31Figure 3-4The equivalent model of anchor with a semicircular groove milled on the surface of it to encapsulate fiber Bragg grating31图3-5纤芯内轴向应变沿长度分布(光栅长度60mm)34Figure 3-5Axial strain distribution inside the core along the length(the length of the fiber Bragg grating is 60mm)34图3-6纤芯内轴向应变沿长度分布(光栅长度80mm)34Figure 3-6Axial strain distribution inside the core along the length(the length of the fiber Bragg grating is 80mm)34图3-7纤芯内轴向应变沿长度分布(光栅长度100mm)35Figure 3-7Axial strain distribution inside the core along the length(the length of the fiber Bragg grating is 100mm)35图3-8应变传递效率随中间介质层厚度的变化37Figure 3-8Strain transfer efficiency varying with the thickness of middle medium layer 37图3-9应变传递率随中间介质弹性模量的变化38Figure 3-9Strain transfer efficiency varying with the elastic modulus of middle medium layer38图3-10应变传递率随中间介质泊松比的变化38Figure 3-10Strain transfer efficiency varying with the poissons ratio of middle medium layer38图3-11传感器长度和中间介质层厚度对平均应变传递效率的影响39Figure 3-11Strain transfer efficiency varying with sensors length and the middle medium layers thickness39图3-12Mindlin解的计算简图42Figure 3-12The calculation diagram of the solutions of Mindlin42图3-13剪应力和轴力分布43Figure 3-13The distribution of shear stress and axial stress43图3-14Kelvin问题计算简图44Figure 3-14The calculation diagram of the Kelvin problem44图3-15全长锚固和加长锚固方式下锚杆所受应力沿锚杆杆体的分布曲线47Figure 3-15Stress distribution of anchor along the rod body under full-size grouted anchorage and lengthening anchorage47图3-16锚杆约束下的岩体变形48Figure 3-16Deformation of rock under the constraint of anchor48图4-1实验测试系统中光纤Bragg光栅布置图和圆钢截面图54Figure 4-1Fiber Bragg grating layout and round steel section graph in experimental test system54图4-2粘贴好后的圆钢55Figure 4-2Pasted round steel55图4-3MTS试验机上实验时各过程变化58Figure 4-3Pictures of each process in MTS test machine58图4-4光纤光栅测力锚杆标定装置实验平台59Figure 4-4Experimental platform of fiber grating force-measuring anchor calibration device59图4-5方案5在整个拉拔过程的应变片转化后的应变变化趋势图60Figure 4-5Strain change trend after transforming strain gauge in the whole process of drawing experiment in experimental scheme60图4-6方案5整个拉拔过程的光纤Bragg光栅波长变化量趋势图61Figure 4-6Fiber Bragg grating wavelength variation trend in the whole process of drawing experiment in experimental scheme 561图4-7方案5中光纤Bragg光栅应变传递率在整个拉拔过程的趋势图61Figure 4-7Strain transfer rate trend of fiber Bragg grating in the whole process of drawing experiment in experimental scheme 561图4-8方案5中两个Bragg光栅都显示数据段内的光纤Bragg光栅应变传递率趋势图(相当于局部放大的效果)62Figure 4-8Strain transfer rate trend of fiber Bragg grating in the process of two Bragg grating both display data in experimental scheme 5 (equivalent to the local amplification effect)62图4-9方案5拉拔试验前面阶段Bragg光栅计算后的应变值和应变片应变值随时间变化曲线62Figure 4-9Strain value of Bragg grating after calculation and strain gauge changes with time in initial stage of pullout test in experimental scheme 562图4-10方案5中弹性阶段应变片应变值随时间变化及其趋势线63Figure 4-10Strain value of strain gauge changes with time and its trend in the elastic stage in experimental scheme 563图4-11方案5中弹性阶段Bragg光栅计算后的应变值随时间变化及其趋势线63Figure 4-11Strain value of Bragg grating after calculation changes with time and its trend in the elastic stage in experimental scheme 563图4-12方案5中MTS试验机上数据绘制的负荷伸长量曲线64Figure 4-12Drawing curve of force-extension by using data on MTS testing machine in experimental scheme 564图4-13方案1中MTS试验机上自动绘制的负荷伸长量曲线截图64Figure 4-13Screenshot of automatic drawing curve of force-extension on MTS testing machine in experimental scheme 164图5-114301工作面布置图74Figure 5-1Layout of 14301 working face74图5-214301工作面综合柱状图75Figure 5-2Synthesis column map of 14301 working face75图5-314301轨道巷支护形式(层间距大于2m)76Figure 5-3Form of No.14301 rail roadway supporting(layer spacing is larger than2m)76图5-414301轨道巷支护形式(层间距在1m-2m之间)76Figure 5-4Form of No.14301 rail roadway supporting(layer spacing is between 1m and 2m)76图5-514301轨道巷支护形式(层间距小于1m)77Figure 5-5Form of No.14301 rail roadway supporting(layer spacing is smaller than 1m)77图5-614301轨道巷78Figure 5-6No.14301 rail roadway78图5-714301轨道巷光纤矿压监测系统组成框图78Figure 5-7The diagram of fiber mine pressure monitoring system in No.14301 rail roadway78图5-8光纤Bragg光栅测力锚杆的结构示意图79Figure 5-8Schematic diagram of the structure of fiber Bragg grating force-measuring anchor79图5-914301轨道巷矿压监测综合测站布置图80Figure 5-9General station layout of mine pressure monitoring in No.14301 rail roadway80图5-10光纤Bragg光栅测力锚杆安装方法图81Figure 5-10The diagram of installation method of force-measuring anchor using fiberBragg grating81图5-11安装好后的测力锚杆图81Figure 5-11The diagram of force-measuring anchor after installation81图5-12两测站测力锚杆轴向应力沿锚杆杆体的分布(2月5日)82Figure 5-12The axial stress distribution of force-measuring anchor along the rod body in two stations(February 5)82表清单表序号表名称页码表1-1各种类型的测力锚杆的存在的问题15Table 1-1The existing problems of various types of force-measuring anchor15表2-1常用的温度补偿方法的原理及优缺点24Table 2-1The principle and advantages and disadvantages of commonly used temperature compensation methods24表3-1光纤及保护层的主要参数33Table 3-1The main parameters of fiber and the protection layer33表3-2光纤体和中间介质层的力学性质范围36Table 3-2Mechanical properties range of optical fiber and the middle medium layer36表3-3三种锚固方式的特点、优缺点及适用条件40Table 3-3The characteristics、advantages and disadvantages and application condition of three kinds of anchoring types40表3-4三种锚固方式锚杆支护应力场分布特点41Table 3-4Stress field distribution characteristics of anchor supporting using three kinds of anchoring types41表4-1光纤Bragg光栅两种粘贴法的比较52Table 4-1Comparison of two kinds of paste methods of fiber Bragg grating52表4-2实验所需材料及相关参数53Table 4-2Eperimental materials and related parameters53表4-3光纤Bragg光栅和应变片封装流程54Table 4-3Encapsulation process of fiber Bragg grating and strain gauge54表4-4MTS电子万能试验机和光纤光栅测力锚杆标定装置的比较56Table 4-4Comparison of MTS electronic testing machine and fiber grating force-measuring anchor calibration device56表4-5方案5实验中不同时间波长和应变片变化值及应变传递率59Table 4-5Value of wavelength and resistance change of strain gauge in different time in experimental scheme 1 and strain transfer rate59表4-6不同组合方式下的应变传递率汇总64Table 4-6Summary of strain transfer rate under different combination modes.64表4-7极差分析过程68Table 4-7Process of range analysis68表4-8方差分析过程68Table 4-8Analysis of Variance68表4-9实验结果显著性分析69Table 4-9Significance analysis of experimental results69表4-10最优化分析及结果69Table 4-10Optimization analysis and result69表5-1光纤光栅测力锚杆主要参数80Table 5-1Main parameters of force-measuring anchor using fiber grating801 绪论1 绪论1 Introduction1.1 问题的提出及研究意义(Presentation of the Problem and Research Meaning)煤炭是中国的主体能源和重要的工业原料,煤炭工业在我国国民经济中占有举足轻重的地位,几十年来在我国的一次性能源结构中煤炭所占的比重一直在67%以上,始终处于主体地位。2012年全国煤炭产量36.6亿吨,2013年全国煤炭产量完成37亿吨左右。消费方面,2013全国煤炭消费量达36.1亿吨。预计2014年全国煤炭供应能力40亿吨左右,全年产量38亿吨左右,结构性过剩态势还不会发生根本性改变。2013年,煤炭消费占一次能源消费的比重为65.7%,同比下降0.9个百分点。初步研究预测,到2020年全国煤炭消费量将达到48亿吨左右。目前,煤炭在我国一次能源消费结构中的比重仍在60%以上,煤炭工业仍具有较大的发展空间。但由于煤炭是不可再生资源,且煤炭行业属于高危行业,因此,在我国科学开采煤炭资源,控制和减少事故的发生率,降低百万吨死亡率,对于促进国民经济持续健康发展和保证人民

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论