四边形知识点总结[1].doc_第1页
四边形知识点总结[1].doc_第2页
四边形知识点总结[1].doc_第3页
四边形知识点总结[1].doc_第4页
四边形知识点总结[1].doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四边形知识点总结主备教师:伊战生 审核教师:普小民 谭瑞娜学习目标 1掌握多边形与四边形的有关定理和推论、并会用符号语言来表示。学习过程1 学生用20分钟复习下表中的内容1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角和等于360.2多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180;(2)任意多边形的外角和等于360.3平行四边形的性质:因为ABCD是平行四边形4.平行四边形的判定:.5.矩形的性质:因为ABCD是矩形6. 矩形的判定:四边形ABCD是矩形. 7菱形的性质:因为ABCD是菱形8菱形的判定:四边形四边形ABCD是菱形.9正方形的性质:因为ABCD是正方形 10正方形的判定:四边形ABCD是正方形. (3)ABCD是矩形又AD=AB 四边形ABCD是正方形11等腰梯形的性质:因为ABCD是等腰梯形 12等腰梯形的判定:四边形ABCD是等腰梯形 (3)ABCD是梯形且ADBCAC=BDABCD四边形是等腰梯形 14三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式: 1S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2S平行四边形 =ah. a为平行四边形的边,h为a上的高)3S梯形 =(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)四 常识:1若n是多边形的边数,则对角线条数公式是:.2规则图形折叠一般“出一对全等,一对相似”.3如图:平行四边形、矩形、菱形、正方形的从属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段有两条对称轴.二、小组交流:。三、展示点拨:四、教师归纳:四边形知识点归纳平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形。平行四边形是中心对称图形,对称中心是两条对角线的交点。平行线之间的距离及特征平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离。平行线之间的距离特征1:平行线之间的距离处处相等。平行线之间的距离特征2:夹在两条平行线之间的平行线段相等。矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。直角三角形的性质:直角三角形斜边上的中线等于斜边的一半菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形。菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线。菱形的面积:菱形的面积等于对角线乘积的一半。推广:对角线互相垂直的四边形面积等于对角线乘积的一半。正方形正方形定义1:有一组邻边相等的矩形叫做正方形。正方形定义2:有一个角是直角的菱形叫做正方形。正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴梯形梯形定义:只有一组对边平行的四边形叫做梯形。梯形判定1:一组对边平行而另一组对边不平行的四边形是梯形。梯形判定2:一组对边平行且不相等的四边形是梯形。直角梯形定义:有一个角是直角的梯形叫做直角梯形。等腰梯形定义:两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形,只有一条对称轴,一底的垂直平分线是它的对称轴。中位线三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。(三角形有三条中位线)三角形中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半。梯形中位线定义:连接梯形两腰中点的线段,叫做梯形的中位线。(梯形的中位线有且只有一条)梯形中位线性质:梯形中位线平行于两底,并且等于两底和的一半。梯形面积:梯形面积等于中位线与高的乘积。梯形辅助线的添法(图一) (图二) (图三)(图四) (图五) (图六)(图七) (图八)教后记:课堂练习1如图ABC与CDE都是等边三角形,点E、F分别在AC、BC上,且EFAB(1)求证:四边形EFCD是菱形;(2)设CD4,求D、F两点间的距离2如图,已知在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF (1)求证:ABEADF;(2)过点C作CGEA交AF于H,交AD于G,若BAE=25,BCD=130,求AHG的度数3已知梯形ABCD中,ADBC,AD=2,BC=4,对角线AC=5,BD=3,试求此梯形的面积4将一张矩形纸片沿直线折叠一次,折痕恰好把矩形分为面积相等的两部分(1)这样的折痕有多少条?(2)这样的折痕具有什么特点?5如图,斜折一页书的一角,使点A落在同一页书内的A处,DE为折痕,作DF平分ADB,试猜想FDE等于多少度,并说明理由二、填空题1顺次连接一个任意四边形四边的中点,得到一个_四边形2顺次连接对角线相等的四边形的各边中点,所得四边形是_3平行四边形的周长为28,两邻边的比为4:3,则较短的一条边的长为_4如图1,已知:在ABCD中,AB=4cm,AD=7cm,ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_cm (1) (2) (3)5如图2,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个最大的正方形,他判定方法是_6如图3,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合)且PEBC交AB于E,PFCD交AD于F,则阴影部分的面积是_7.如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的A.三角形 B.平行四边形 C.矩形 D.正方形8、如图,在ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论