




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考解析几何试题研究 及2011年备考建议,湖南师大附中 苏林,解析几何是高中数学的主干知识之一,教材螺旋式上升地安排了三部分内容:解析几何初步(直线与圆);圆锥曲线;坐标系与参数方程. 其中坐标系与参数方程为选修内容。 解析几何的命题既注重对解析几何基础知识的考查,又常结合函数、方程、不等式、三角函数、平面几何、数列、向量,通过处理轨迹、最值、对称、范围、参系数等问题来考查学生的数学综合能力.因其综合性强,运算要求较高,学生在解答解析几何问题时,往往失分较多。下面将从新旧考纲对解析几何考试要求的变化、湖南高考及新课标高考解析几何考点的分布、湖南高考解析几何试题命题特色、若干解析几何高考试题命题探源等方面谈谈我的一些认识与看法. 不妥之处望批评指正!,一、新旧考纲对解析几何考试要求的变化:,1.大纲要求掌握两条直线所成的角,对两条平行直线间的距离不作明确要求;,课标对两条直线所成的角不作要求,但要求“会求两条平行直线间的距离”;,2.大纲要求掌握椭圆、双曲线、抛物线的定义、标准方程和简单几何性质;,课标对解析几何部分的要求相对于大纲 有些明显的变化,整体要求有所降低,部分内 容有删减,参数方程放入了选修系列4,但内容 有所增加,主要变化如下:,一、新旧考纲对解析几何考试要求的变化:,理科要求:掌握椭圆、抛物线的定义、标准方程、几何图形及简单性质; 了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。,3.课标对椭圆、双曲线第二定义不作要求;,4.大纲要求理解椭圆和圆的参数方程,,课标在该处的要求分了两个层次:,文科要求:掌握椭圆的定义、标准方程及简单几何性质;了解抛物线、双曲线的定义、几何图形和标准方程,知道它们的简单几何性质。,一、新旧考纲对解析几何考试要求的变化:,(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。,(1)通过分析抛物运动中时间与运动物体位置 的关系,写出抛物运动轨迹的参数方程,体会 参数的意义。,课标在选修系列4中对参数方程要求有所 增加:,二、考点分布统计分析:,表1:2004年2010年湖南高考解析几何考点分布统计表:,二、考点分布统计分析:,表2:2010年全国新课标高考解析几何考点分布统计表:,二、考点分布统计分析:,从湖南高考和全国新课标地区高考试题考点 分布情况来看,新课程高考仍然注重对基础知识, 基本技能和数学思想方法的考查,试卷结构相对 稳定,一般解析几何的考查有三道题,选择、填 空题重点考查直线与圆、圆锥曲线基本问题、曲 线与方程,解答题以直线与圆锥曲线的位置关系 为载体,重点是对数学思想方法与相关能力进行 综合考查。,二、考点分布统计分析:,新课标对椭圆和双曲线的第二定义不作要求, 课标卷中均没有出现相关内容;对双曲线的考查 能力要求有所降低,较少作为解答题的形式出现, 但在基础知识部分的考查频率增加。湖南等部分 省份将坐标系与参数方程作为学生必选内容,故 该部分也作为基本知识和其它知识融合,在小题 中进行考查。其它省份则多以选做题的形式在小 题或解答题中进行考查。,二、考点分布统计分析:,湖南2004年开始自主命题,虽然2010年 才实行新课程第一次高考,但从考点分布情 况、试题命制特点等方面来看,试题的命制 融入了新课程理念,研究这些试题对2011年 高考备考具有指导意义。,三、湖南卷解析几何试题特点分析:,1、注重对基础知识的考查,覆盖面广:,从“2004年2010年湖南高考解析几何考点分布统计表”可以看出,理科每年均有一至两道小题,文科有两到三道小题考查解析几何基础知识,考点涉及直线与圆,圆锥曲线的基本性质,并将小题和解答题的知识点分布进行了整体布局,基本覆盖了解析几何几大主要考点,注重对直线倾斜角和斜率、直线方程、直线位置关系,圆的方程、圆的几何性质、直线与圆的位置关系、椭圆、双曲线、抛物线的定义、简单几何性质等基础知识的考查。,2、注重在知识交汇点命题:,三、湖南卷解析几何试题特点分析:,湖南高考从2004年开始自主命题,在试题 命制方面很好地融入了“能力立意,在知识交汇 点命制试题,让学生想得多,算得少”等新课程 理念。,2、注重在知识交汇点命题:,三、湖南卷解析几何试题特点分析:,例1 (04年湖南理16)设F是椭圆 的右 焦点,且椭圆上至少有21个不同的点 使 组成公差为d的等差数列,则d的取值范围为 .,【点评】以椭圆简单几何性质为背景,将数列、不等式知识巧妙地结合。,例2 (05年湖南文7)设直线的方程是 ,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是 ( ) A20 B19 C18 D16,2、注重在知识交汇点命题:,三、湖南卷解析几何试题特点分析:,【点评】将直线方程与排列组合知识结合.,例3 (04年湖南理21文22)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点.,3、注重对学生能力和素质的考查:,三、湖南卷解析几何试题特点分析:,()设点P分有向线段所成的比为, 证明: ;,()设直线AB的方程是x2y12=0,过A、B 两点的圆C与抛物线在点A处有共同的切线,求 圆C的方程.,例3 (04年湖南理21文22)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点.,3、注重对学生能力和素质的考查:,三、湖南卷解析几何试题特点分析:,【点评】以直线与抛物线的位置 关系为主体,很好的融合了向量 共线及垂直、坐标法、直线与圆 的位置关系,导数法求抛物线切 线的斜率等知识,很好地考查了 学生的能力和素质。,三、湖南卷解析几何试题特点分析:,4、坚持数学应用,考查应用意识:,应用题已经成为了湖南高考数学卷的特色 之一,湖南高考数学卷每年坚持命制了除概率 统计之外的应用题,前几年一般以函数、三角 函数、数列等知识点为背景命制应用题,2010 年更是命制了以解析几何为背景的应用题。,三、湖南卷解析几何试题特点分析:,4、坚持数学应用,考查应用意识:,例4 (2010湖南理20)为了考察冰川的融化状况,一支科考队在某冰川上相距8km的A,B两点各建一个考察基地视冰川面为平面形,以过A,B两点的直线为x轴,线段AB的垂直 平分线为y轴建立平面直角坐标系(图6)在直线 的右侧,考察范围为到 点B 的距离不超过 km的区域;在直线 的左侧,考察范围为 到A,B两点的距离之和不超过 km的区域,()求考察区域边界曲线的方程;,()如图6所示,设线段P1P2、P2P3是冰川的部分边界线(不考 虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察 区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍,求冰川边界线移动到考察区域所需的最短时间,【点评】通过命制应用题来定位考查学生的数 学应用意识,落实新课程中“发展学生的应用意 识”的理念。命制解析几何应用 题湖南是第一次,落实了新课 标中对圆锥曲线的要求“了解圆 锥曲线的实际背景,感受圆锥 曲线在刻画现实世界和解决实 际问题中的作用”。,三、湖南卷解析几何试题特点分析:,4、坚持数学应用,考查应用意识:,四、对若干高考解析几何试题探源研究:,1、以教材例题习题为背景命制试题:,(1)利用教材例题恰当的设置背景和设问方式 命制试题:,例5 (2010湖南理20)(见例4),【背景探源】背景选自选修21第47页例7,四、对若干高考解析几何试题探源研究:,1、以教材例题习题为背景命制试题:,(1)利用教材例题恰当的设置背景和设问方式 命制试题:,例5 (2010湖南理20)(见例4),【点评】给教材中一个很普通的例题,加上一个 应用背景,既考查了学生的应用意识,又考查了 椭圆、圆的定义,以及直线与椭圆、圆的位置关 系,理科试题中还融入了数列知识.具有立意新、 入口宽、覆盖面广、难度适当等显著特色。,四、对若干高考解析几何试题探源研究:,1、以教材例题习题为背景命制试题:,(2)对教材例题进行深入研究得出新的结论, 巧妙设置问法,命制符合课标要求的试题:,例6 (2010年北京理19)在平面直角坐标系xoy中,点B与点 A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率 之积等于 . ()求动点P的轨迹方程; ()设直线AP和BP分别与直线x=3交于点M,N,问:是否存 在点P使得PAB与PMN的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。,四、对若干高考解析几何试题探源研究:,例7 (2010上海理23)已知椭圆的方程为 , A(0,b)、B(0, b)和Q(a,0)为的三个顶点 (1) 若点M满足 ,求点M的坐标; (2) 设直线l1:y=k1x+p交椭圆于C、D两点,交直线l2:y=k2x于 点E若 ,证明:E为CD的中点; (3) 设点P在椭圆内且不在x轴上,如何构作过PQ中点F的直线 l,使得l与椭圆的两个交点P1、P2满足 ?令 a=10,b=5,点P的坐标是(8, 1)若椭圆上的点P1、P2满 足 ,求点P1、P2的坐标,四、对若干高考解析几何试题探源研究:,例8 (2010年山东理21)如图,已知椭圆 的 离心率为 ,以该椭圆上的点和椭圆的左、右焦点F1、F2 为顶 点的三角形 的周长为 .一等轴双曲线的顶 点是该椭圆 的焦点,设 P为该双曲线上异于顶点的任一点,直线PF1、PF2与 椭圆的交点分别为A、B 和C、D . ()求椭圆和双曲线的标准方程; ()设直线 PF1、PF2的斜率分别为k1、 k2 ,证明 k1k2 =1; ()是否存在常数,使得 恒成立 ?若存 在,求的值;若不存在,请说明理由.,【背景探源】背景选自选修21第41页例3, 及选修21第55页探究:,四、对若干高考解析几何试题探源研究:,四、对若干高考解析几何试题探源研究:,四、对若干高考解析几何试题探源研究:,结论1:,平面上一动点P与两定点A、B斜率之积为定值m,(设AB中点为O),(1) 若m(, 1)(1,0),则P点的轨迹是以O为中心的椭圆(除去A、B及A、B关于过O的水平直线对称的两点);,(2) 若m= 1则P点的轨迹是以O为中心的圆(除去A、B及A、B关于过O的水平直线对称的两点);,(3) 若m(0,+),则P点的轨迹是以O为中心的双曲线(除去A、B及A、B关于过O的水平直线对称的两点).,四、对若干高考解析几何试题探源研究:,结论2:,P是有心二次曲线C上任意一点, A、B是此曲线上关于中心对称的两点,设PA、PB的斜率分别为k1 、 k2则k1与k2之积为定值m,,(1) 若C是椭圆,则m=,(2) 若C是圆,则m=1,(3) 若C是双曲线,则m=,四、对若干高考解析几何试题探源研究:,2010年山东卷分析:,四、对若干高考解析几何试题探源研究:,推论:,斜率为k1的直线l被有心二次曲线C所截弦的中点为M ,设M 与 C 的中心所在直线斜率为k2,则k1与k2之积为定值m,,(1) 若C是椭圆,则m=,(2) 若C是圆,则m=1,(3) 若C是双曲线,则m=,四、对若干高考解析几何试题探源研究:,2010年上海卷分析:,四、对若干高考解析几何试题探源研究:,2、以有心二次曲线性质为背景,在表述上求 新意,在问法上作创新命制试题:,例9 (2010年高考浙江卷理科21)已知m1,直线l:xmy =0, 椭圆C:( )2+y2= 1 ,F1、F2分别为椭圆C的左右焦点。 ()当直线l过右焦点F2时,求直线l的方程; ()设直线l与椭圆C交与A、B两点,AF1F2, BF1F2的重心 分别为G,H.若原点O在以线段GH为直径的的圆内,求实数m的取 值范围。,四、对若干高考解析几何试题探源研究:,例10 (2010年高考陕西卷理科20)如图,椭圆C: 的 顶点为A1、A2 、 B1 、 B2,焦点为F1,F2, | A1B1| = 7 , SA1B1A2B2 = 2 SB1F1 B2F2 ()求椭圆C的方程; ()设n是过原点的直线,l是与n垂直相交于P点,与椭圆相交 于A,B两点的直线,OP = 1,是否存在 上述直线l使 成立?若存在, 求出直线l的方程;若不存在,请说明理由 。,四、对若干高考解析几何试题探源研究:,例11 (2007年江西理21)设动点P到点A(1,0) 和 B(1,0)的距离分别为d1、d2 , ,且 存在常数 ,使得 (1)证明:动点P 的轨迹C为双曲线,并求出C 的方程; (2)过点B 作直线交双曲线C的右支于M、N 两 点,试确定的范围,使 ,其中O点 为坐标原点.,【背景探源】以有心二次曲线的一个性质为背景 命制而成:,四、对若干高考解析几何试题探源研究:,四、对若干高考解析几何试题探源研究:,四、对若干高考解析几何试题探源研究:,2010年浙江卷分析:,四、对若干高考解析几何试题探源研究:,2010年陕西卷分析:,四、对若干高考解析几何试题探源研究:,2007年江西卷分析:,四、对若干高考解析几何试题探源研究:,利用该背景命制的高考题最早出现在1991年 全国高考理26:双曲线的中心在坐标原点O,焦点 在x轴上,过双曲线右焦点,且斜率为 的直线 交双曲线于P、Q两点.若OPOQ,|PQ|=4, 求双曲线的方程.,1991年全国高考文26:已知椭圆的中心在坐标原 点,焦点在坐标轴上,直线y = x + 1与该椭圆相交 于P、Q,且OPOQ,|PQ|= ,求该椭圆的方程.,四、对若干高考解析几何试题探源研究:,近些年以该背景命制的高考试题还有: 2007年陕西、2007年天津、2007年四川、 2008年辽宁、2008年福建、2008年海南宁夏、 2009年山东、2009年北京.,出现此景象的原因与该背景的特点和新课程 标准有着密不可分的关系,(1)“垂直、角的范 围”可用向量有效刻画;(2)直线与圆的位置关 系可通过点到直线的距离进行刻画;(3)交点 坐标联立方程设而不求;这些特点与新课标考试 要求:重主干知识、重通性通法、重算法算理、 能力立意、知识交汇、重数学思想方法等能很好 的吻合。,四、对若干高考解析几何试题探源研究:,3、注重算法和算理、数学思想方法的考查,在 问题背景上作创新:,为了达到考查算法、算理和数学思想方法的 考查目标,命题者以算法和思想方法为核心,在 知识背景上做文章,试题往往体现了“同法不同 源”的特点。,四、对若干高考解析几何试题探源研究:,3、注重算法和算理、数学思想方法的考查,在 问题背景上作创新:,四、对若干高考解析几何试题探源研究:,3、注重算法和算理、数学思想方法的考查,在 问题背景上作创新:,例13 (2009年辽宁文22)已知抛物线 C:x2=2py (p0)上一点A(m,4)到其焦点的距离为 (I)求 p与m 的值; (II)设抛物线C上一点P的横坐标为t(t0) ,过 p的直线交C于另一点Q,交x轴于点M ,过点Q 作PQ的垂线交C于另一点N若MN是C的切线, 求t的最小值,例14 (2010山东理21)见例8,四、对若干高考解析几何试题探源研究:,3、注重算法和算理、数学思想方法的考查,在 问题背景上作创新:,【点评】这三道高考题都涉及到两条直线与圆锥曲线相交的问题,如果设出两条直线分别与圆锥曲线联立,运算量较大,如果考虑到两个斜率的等量关系,只需将一条直线与圆锥曲线联立,而另一条可以直接运用k1与k2的关系替代,这样可以减少运算量。三道题都通过“斜率替代”使运算量降低,但设置了三个完全不同的问题背景,分别在椭圆、抛物线、双曲线中构建了 “k1+ k2 = 0、 k1k2 = 1、 k1k2 = 1”,运用同样的算法“斜率替代”可简化运算.,五、复习备考建议:,1、注重对基本知识,基本技能的落实:,对基础知识、基本技能的考查,仍然是新课标高考的重点, 基础题仍然是试题的主要构成,是学生得分的主要来源。复习过 程中应让学生对解析几何三部分内容有一个清晰的架构,明确每 一部分有哪些考点,高考怎样出题,积累常用模型(如求离心率 或离心率的取值范围、焦点三角形中的相关问题等),熟练通用 方法,注意模型和方法中容易出错的细节。落实基本技能的训练, 如考查直线与圆锥曲线的综合问题,一般都要经历联立方程、消 元、求判别式确定参数范围、韦达定理写出两根之和、之积,代 入直线或抛物线方程求另一坐标之和、之积等过程,我们可以在 课堂、作业、考试、课外辅导中对学生进行落实.对学生常见错误 进行总结,提高学生基本运算能力和得分能力。,五、复习备考建议:,2、注重对数学思想方法提炼:,数学思想方法的考查分为三个层面:“配方法、换元法、 代入法、消元法、待定系数法”等具体方法的考查;“分析法、 综合法、类比法、归纳法、演绎法、反证法”等一般逻辑方法的 考查;“函数与方程思想、数形结合思想、分类讨论思想、化 归与转化思想”等数学思想的考查。新课标高考讲究能力立意, 对数学思想方法的考查贯穿整套试卷,无论是基础题还是综合 题。所以在复习备考过程中,应当将数学思想方法的渗透和提炼 贯穿始终。,五、复习备考建议:,3、注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业生产中的技术创新与实践
- 考研英语写作考点分析
- 2025年放射科肺部CT影像学分析与诊断题库考试卷答案及解析
- 民宿租赁意向金合同范本(含特色服务等)
- 离婚协议中关于共同财产分割及债务清偿补充协议
- 房地产销售代理公司敏感数据保密及保密义务合同
- 生态旅游区物业委托代管与生态保护合作协议
- 工业厂房租赁合同提前终止及设备搬迁协议
- 离婚协议书模板:房产分割与补偿合同
- 文创园区商铺租赁合同及文化创意产品推广服务协议
- 2023年广东生物高考第18题光合作用说题课件
- 除锈剂MSDS参考资料
- 6社会体育导论
- 部编版七年级历史与社会下册《第三课中华文明探源》评课稿
- 中考英语作文预测(范文20篇)
- 选煤厂原煤分级筛技术操作规程
- 方物电子教室q2用户手册
- 消防管道支架工程量计算表
- GB/T 700-2006碳素结构钢
- 腹腔镜下肾癌根治术
- 如何学好初中数学-课件
评论
0/150
提交评论