全国普通高等学校招生统文科数学新课标卷精编.docx_第1页
全国普通高等学校招生统文科数学新课标卷精编.docx_第2页
全国普通高等学校招生统文科数学新课标卷精编.docx_第3页
全国普通高等学校招生统文科数学新课标卷精编.docx_第4页
全国普通高等学校招生统文科数学新课标卷精编.docx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内装订线学校:_姓名:_班级:_考号:_外装订线绝密启用前2016-2017学年度?学校12月月考卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1设集合,则=(A) (B) (C) (D)2若,则=(A)1 (B) (C) (D)3已知向量 , 则ABC=(A)30 (B)45 (C)60 (D)1204某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15,B点表示四月的平均最低气温约为5.下面叙述不正确的是(A)各月的平均最低气温都在0以上 (B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20的月份有5个5小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A) (B) (C) (D) 6若 ,则(A) (B) (C) (D)7已知,则(A) (B) (C) (D)8执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=(A)3 (B)4 (C)5 (D)69在中,BC边上的高等于,则 (A) (B) (C) (D)10如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为(A) (B) (C)90 (D)8111在封闭的直三棱柱内有一个体积为V的球.若,则V的最大值是(A)4 (B) (C)6 (D) 12已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且轴.过点A的直线l与线段交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A) (B) (C) (D)第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题13若满足约束条件 则的最小值为_.14函数的图像可由函数的图像至少向右平移_个单位长度得到15已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则_.16已知为偶函数,当 时,则曲线在点处的切线方程是_.评卷人得分三、解答题17已知各项都为正数的数列满足,.()求;()求的通项公式.18下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图()由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:19如图,四棱锥D中,平面,为线段上一点,为的中点()证明平面;()求四面体的体积.20已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点()若在线段上,是的中点,证明;()若的面积是的面积的两倍,求中点的轨迹方程.21设函数()讨论的单调性;()证明当时,;()设,证明当时,.22选修4-1:几何证明选讲如图,O中的中点为,弦分别交于两点()若,求的大小;()若的垂直平分线与的垂直平分线交于点,证明23选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为.以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .()写出的普通方程和的直角坐标方程;()设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.24选修4-5:不等式选讲已知函数.()当a=2时,求不等式的解集;()设函数.当时,求的取值范围.试卷第5页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。参考答案1C【解析】试题分析:由补集的概念,得,故选C【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化2D【解析】试题分析:,故选D【考点】复数的运算、共轭复数、复数的模【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把换成1复数除法可类比实数运算的分母有理化复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解3A【解析】试题分析:由题意,得,所以,故选A【考点】向量的夹角公式【思维拓展】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;(2)由向量的数量积的性质知,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题4D【解析】试题分析:由图可知各月的平均最低气温都在0以上,A正确;由图可知在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正确;由图可知平均最高气温高于20的月份有3个,所以不正确故选D【考点】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B5C【解析】试题分析:开机密码的可能有,共15种可能,所以小敏输入一次密码能够成功开机的概率是,故选C【考点】古典概型【解题反思】对古典概型必须明确两点:对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等只有在同时满足、的条件下,运用的古典概型计算公式(其中n是基本事件的总数,m是事件A包含的基本事件的个数)得出的结果才是正确的6D【解析】试题分析:【考点】同角三角函数的基本关系、二倍角公式【方法点拨】三角函数求值:“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;“给值求值”关键是目标明确,建立已知和所求之间的联系7A【解析】试题分析:因为,又函数在上是增函数,所以,即,故选A【考点】幂函数的单调性【技巧点拨】比较指数的大小常常根据三个数的结构,联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决8B【解析】试题分析:第一次循环,得;第二次循环,得,;第三次循环,得;第四次循环,得,退出循环,输出,故选B【考点】循环结构的程序框图【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体9D【解析】试题分析:设边上的高线为,则,所以由正弦定理,知,即,解得,故选D【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解10B【解析】试题分析:由三视图可知该几何体是斜四棱柱,所以该几何体的表面积,故选B【考点】空间几何体的三视图及表面积【技巧点拨】对于求解多面体的表面积及体积的题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解11B【解析】试题分析:要使球的体积最大,必须球的半径最大因为ABC的内切圆的半径为2,且AA1=3,所以由题意易知球与直三棱柱的上下底面都相切时,球的半径取得最大值,此时球的体积为,故选B【考点】三棱柱的内切球、球的体积【思维拓展】立体几何的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解12A【解析】试题分析:由题意设直线的方程为,分别令与得,设OE的中点为H,由,得,即,整理得,所以椭圆离心率为,故选A【考点】椭圆的几何性质、三角形相似【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出13【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知当目标函数经过点时取得最小值,即【考点】简单的线性规划问题【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果14【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少154【解析】试题分析:由,得,代入圆的方程,整理得,解得,所以,所以又直线的倾斜角为,由平面几何知识知在梯形中,【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决16【解析】试题分析:当时,则又因为为偶函数,所以,所以,则,所以切线方程为,即【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为17();()【解析】试题分析:()将代入递推公式求得,将的值代入递推公式可求得;()将已知的递推公式进行因式分解,然后由定义可判断数列为等比数列,由此可求得数列的通项公式试题解析:()由题意,得. ()由得.因为的各项都为正数,所以.故是首项为,公比为的等比数列,因此. 【考点】数列的递推公式、等比数列的通项公式【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明(常数);(2)中项法,即证明根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解18(),说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系;()1.82亿吨【解析】试题分析:()根据相关系数公式求出相关数据后,然后代入公式即可求得的值,最后根据其值大小回答即可;()利用最小二乘法的原理提供的回归方程,准确求得相关数据即可建立y关于t的回归方程,然后作预测试题解析:()由折线图中数据和附注中参考数据得,. 因为与的相关系数近似为0.99,说明与的线性相关程度相当高,从而可以用线性回归模型拟合与的关系. ()由及()得,.所以,关于的回归方程为:. 将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 【考点】线性相关与线性回归方程的求法与应用【方法点拨】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数公式求出,然后根据的大小进行判断求线性回归方程时再严格按照公式求解,一定要注意计算的准确性19()见解析;()【解析】试题分析:()取的中点,然后结合条件中的数据证明四边形为平行四边形,从而得到,由此结合线面平行的判断定理可证;()由条件可知四面体N-BCM的高,即点到底面的距离为棱的一半,由此可顺利求得结果试题解析:()由已知得,取的中点,连接,由为中点知,.又,故平行且等于,四边形为平行四边形,于是.因为平面,平面,所以平面. ()因为平面,为的中点,所以到平面的距离为. 取的中点,连结.由得,.由得到的距离为,故.所以四面体的体积. 【考点】直线与平面间的平行与垂直关系、三棱锥的体积【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又找出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解20()见解析;()【解析】试题分析:()设出与轴垂直的两条直线,然后得出的坐标,然后通过证明直线与直线的斜率相等即可证明结果;()设直线与轴的交点坐标,利用面积可求得,设出的中点,根据与轴是否垂直分两种情况结合求解试题解析:由题设.设,则,且.记过两点的直线为,则的方程为. ()由于在线段上,故.记的斜率为,的斜率为,则.所以. ()设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为. 【考点】抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹方程的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点21()当时,单调递增;当时,单调递减;()见解析;()见解析【解析】试题分析:()首先求出导函数,然后通过解不等式或可确定函数的单调性;()左端不等式可利用()的结论证明,右端将左端的换为即可证明;()变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理试题解析:()由题设,的定义域为,令,解得.当时,单调递增;当时,单调递减.()由()知,在处取得最大值,最大值为.所以当时,.故当时,即. ()由题设,设,则,令,解得.当时,单调递增;当时,单调递减. 由()知,故,又,故当时,.所以当时,.【考点】利用导数研究函数的单调性、不等式的证明与解法【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明22();()见解析【解析】试题分析:()根据条件可证明PFB与PCD是互补的,然后结合PFB=2PCD与三角形内角和定理,不难求得的大小;()由()的证明可知四点共圆,然后根据用线段的垂直平分线知为四边形的外接圆圆心,则可知在线段的垂直平分线上,由此可证明结果试题解析:()连结,则:.因为,所以,又,所以.又,所以, 因此.()因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,又O也在CD的垂直平分线上,因此. 【考点】圆周角定理、三角形内角和定理、垂直平分线定理、四点共圆【方法点拨】(1)求角的大小通常要用到三角形相似、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论