




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题五第三讲 用空间向量的方法解立体几何问题A组1已知(1,5,2),(3,1,z),若,(x1,y,3),且BP平面ABC,则实数x,y,z分别为 (B)A,4B,4C,2,4 D4,15解析352z0,所以z4,又BP平面ABC,所以x15y60,3x3y3z0,由得x,y2已知在正四棱锥ABCDA1B1C1D1中,AA12AB,点E是AA1的中点,则异面直线DC1与BE所成角的余弦值为 (B)ABCD解析建立如图所示空间直角坐标系,设AB1,则AA12,所以B(1,0,0),E(0,0,1),D(0,1,0),C1(1,1,2),则(1,0,2),(1,0,1),设异面直线DC1与BE所成的角为,则cos 3已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则直线AB1与侧面ACC1A1所成角的正弦值等于 (A)A B C D解析设直线AB1与侧面ACC1A1所成角为,建立如图所示空间直角坐标系,设正三棱柱的棱长为2,则A(0,1,0),B1(,0,2),(,1,2),O(0,0,0),B(,0,0),所以(,0,0)为侧面ACC1A1的法向量,所以sin 4已知正方体ABCDA1B1C1D1,下列命题:()232,()0,向量与向量的夹角为60,正方体ABCDA1B1C1D1的体积为|,其中正确命题的序号是 (B)A B C D解析如图所示:以点D为坐标原点,以向量,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,设棱长为1,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),A1(1,0,1),B1(1,1,1),C1(0,1,1),D1(0,0,1),对于:(0,0,1),(1,0,0),(0,1,0),所以(1,1,1),()23,而21,所以()232.所以正确;对于:(1,1,1),(0,0,1),(0,1,0),所以()0.所以正确;对于:(1,0,1),(0,1,1),1,cos,所以与的夹角为120,所以不正确;对于:因为0,所以错误故选B5在底面是直角梯形的四棱锥SABCD中,ABC90,ADBC,SA平面ABCD,SAABBC1,AD,则平面SCD与平面SAB所成锐二面角的余弦值是_.解析如图所示建立空间直角坐标系,则依题意可知D(,0,0),C(1,1,0),S(0,0,1),可知(,0,0)是平面SAB的一个法向量设平面SCD的法向理n(x,y,z),因为(,0,1),(,1,0),所以n0,n0,可推出z0,y0,令x2,则有y1,z1,所以n(2,1,1)设平面SCD与平面SAB所成的锐二面角为,则cos 6已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是_90_.解析延长A1B1至D,使A1B1B1D,连接BD,C1D,DM,则AB1BD,MBD就是直线AB1和BM所成的角设三棱柱的各条棱长为2,则BM,BD2,C1D2A1D2A1C2A1DA1C1cos 601642412.DM2C1D2C1M213,所以cosDBM0,所以DBM907如图,正方形ABCD和四边形ACEF所在平面互相垂直,CEAC,EFAC,AB,CEEF1.(1)求证:AF平面BDE;(2)求证:CF平面BDE;(3)求二面角ABED的大小解析(1)设AC与BD交于点G,因为EFAG,且EF1,AGAC1,所以四边形AGEF为平行四边形所以AFEG.因为EG平面BDE,AF平面BDE,所以AF平面BDE(2)因为正方形ABCD和四边形ACEF所在的平面互相垂直,且CEAC,所以CE平面ABCD.如图以C为原点,建立空间直角坐标系Cxyz.则C(0,0,0),A(,0),D(,0,0),E(0,0,1),B(0,0),F(,1)所以(,1),(0,1),(,0,1)所以0110,1010.所以CFBE,CFDE,所以CF平面BDE又BEDEE,BE、DE平面BDE(3)由(2)知,(,1)是平面BDE的一个法向量,设平面ABE的法向量n(x,y,z),则n0,n0即所以x0,zy.令y1,则z所以n(0,1,),从而cosn,因为二面角ABED为锐角,所以二面角ABED为B组1(2017全国卷,19)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABDCBD,ABBD(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值解析(1)证明:由题设可得ABDCBD,从而ADCD又ACD是直角三角形,所以ADC90取AC的中点O,连接DO,BO,则DOAC,DOAO又因为ABC是正三角形,故BOAC,所以DOB为二面角DACB的平面角在RtAOB中 ,BO2AO2AB2,又ABBD,所以BO2DO2BO2AO2AB2BD2,故DOB90所以平面ACD平面ABC(2)由题设及(1)知,OA,OB,OD两两垂直,以O为坐标原点,的方向为x轴正方向,|为单位长度建立如图所示的空间直角坐标系Oxyz,则A(1,0,0),B(0,0),C(1,0,0),D(0,0,1)由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E(0,),故(1,0,1),(2,0,0),(1,)设n(x,y,z)是平面DAE的法向量,则即可取n(1,1)设m是平面AEC的法向量,则同理可取m(0,1,),则cosn,m所以二面角DAEC的余弦值为2(2017天津卷,17)如图,在三棱锥PABC中,PA底面ABC,BAC90.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PAAC4,AB2(1)求证:MN平面BDE;(2)求二面角CEMN的正弦值;(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长解析如图,以A为原点,分别以,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0)(1)证明:(0,2,0),(2,0,2)设n(x,y,z)为平面BDE的一个法向量,则即不妨设z1,可得n(1,0,1),又(1,2,1),可得n0因为MN平面BDE,所以MN平面BDE(2)易知n1(1,0,0)为平面CEM的一个法向量设n2(x1,y1,z1)为平面EMN的一个法向量,则因为(0,2,1),(1,2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025数字艺术展览数字互动装置技术应用与案例研究001
- 2025年工业互联网平台网络流量整形技术在工业互联网平台智慧工厂中的应用报告
- 2025年农村电商物流配送成本控制分析报告
- 儿童心理发育评估与早期干预
- 教育资源整合项目在2025年社会稳定风险下的风险评估与政策响应报告
- 奢侈品行业跨界营销策略与品牌影响力研究报告
- 2025-2030中国集成电溅射靶材行业现状动态与供需趋势预测报告
- 2025-2030中国过氧化氢等离子灭菌器行业应用趋势与投资效益预测报告
- 2025-2030中国越野雾灯行业消费动态与竞争前景预测报告
- 2025-2030中国虾粉市场销售策略与竞争动态预测报告
- 培训学校收费和退费管理制度
- Welcome Unit 开学第一课(课件)高中英语人教版必修第一册
- 资产管理数字化解决方案
- 护理安全意识
- 钢筋内部比对作业指导书
- 幼儿园中班社会《美丽的黄山》课件
- 法社会学教程(第三版)教学
- 6综合与实践(北京五日游)(教案)-六年级下册数学人教版
- 专题22 桃花源记(含答案与解析)-备战2024年中考语文之文言文对比阅读(全国版)
- GB/T 44150-2024金属及其他无机覆盖层锌与镍、钴或铁合金电镀层
- AQ6111-2023个体防护装备安全管理规范
评论
0/150
提交评论