




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(三十五) 点、线、面之间的位置关系一抓基础,多练小题做到眼疾手快1设P表示一个点,a,b表示两条直线,表示两个平面,给出下列四个命题,其中正确命题的序号是_Pa,Pa;abP,ba;ab,a,Pb,Pb;b,P,PPb.答案:2.如图,在空间四边形ABCD中,MAB,NAD,若,则直线MN与平面BDC的位置关系是_解析:因为,所以MNBD,又MN平面BCD,BD平面BCD,所以MN平面BDC.答案:平行3若平面,相交,在,内各取两点,这四点都不在交线上,这四点能确定_个平面解析:如果这四点在同一平面内,那么确定一个平面;如果这四点不共面,则任意三点可确定一个平面,所以可确定四个答案:1或44.如图,平行六面体ABCD A1B1C1D1中,既与AB共面又与CC1共面的棱有_条解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条答案:55设a,b,c是空间中的三条直线,下面给出四个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线上述命题中正确的命题是_(写出所有正确命题的序号)解析:由公理4知正确;当ab,bc时,a与c可以相交、平行或异面,故错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故错;a,b,并不能说明a与b“不同在任何一个平面内”,故错答案:二保高考,全练题型做到高考达标1已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC和BD不相交,则甲是乙成立的_条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)解析:若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件答案:充分不必要2在正方体ABCDA1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是_解析:由BC綊AD,AD綊A1D1知,BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1BCD1,又EF平面A1BCD1,EFD1CF,则A1B与EF相交答案:相交3下列命题中,真命题的个数为_如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;两条直线可以确定一个平面;空间中,相交于同一点的三条直线在同一平面内;若M,M,l,则Ml.解析:根据公理3,可判断是真命题;两条异面直线不能确定一个平面,故是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故是假命题;根据平面的性质可知是真命题综上,真命题的个数为2.答案:24已知l,m,n为两两垂直的三条异面直线,过l作平面与直线m垂直,则直线n与平面的关系是_解析:因为l,且l与n异面,所以n,又因为m,nm,所以n.答案:n5.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且,则下列说法正确的是_(填序号)EF与GH平行;EF与GH异面;EF与GH的交点M可能在直线AC上,也可能不在直线AC上;EF与GH的交点M一定在直线AC上解析:连结EH,FG,如图所示依题意,可得EHBD,FGBD,故EHFG,所以E,F,G,H共面因为EHBD,FGBD,故EHFG,所以EFGH是梯形,EF与GH必相交,设交点为M.因为点M在EF上,故点M在平面ACB上同理,点M在平面ACD上,所以点M是平面ACB与平面ACD的交点,又AC是这两个平面的交线,所以点M一定在直线AC上答案:6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面直线的对数为_对解析:平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行故互为异面的直线有且只有3对答案:37.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,GH与EF平行;BD与MN为异面直线;GH与MN成60角;DE与MN垂直以上四个命题中,正确命题的序号是_解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60角,DEMN.答案:8如图,在四棱锥VABCD中,底面ABCD为正方形,E,F分别为侧棱VC,VB上的点,且满足VC3EC,AF平面BDE,则_.解析:连结AC交BD于点O,连结EO,取VE的中点M,连结AM,MF,由VC3ECVMMEEC,又AOCOAMEOAM平面BDE,又由题意知AF平面BDE,且AFAMA,所以平面AMF平面BDEMF平面BDEMFBEVFFB2.答案:29.(2018南京一中检测)如图,E,F分别是长方体ABCDA1B1C1D1的棱A1A,C1C的中点求证:四边形B1EDF是平行四边形证明:设Q是DD1的中点,连结EQ,QC1,如图因为E是AA1的中点,Q是DD1的中点,所以EQ綊A1D1.又A1D1綊B1C1,所以EQ綊B1C1,所以四边形EQC1B1为平行四边形,所以B1E綊C1Q.又Q,F分别是D1D,C1C的中点,所以QD綊C1F,所以四边形DQC1F为平行四边形,所以C1Q綊DF.故B1E綊DF,所以四边形B1EDF是平行四边形10.如图所示,四边形ABEF和四边形ABCD都是直角梯形,BADFAB90,BCAD,BCAD,BEFA,BEFA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?说明理由解:(1)证明:因为G,H分别为FA,FD的中点,所以GHAD,GHAD.又BCAD,BCAD,所以GH綊BC,所以四边形BCHG为平行四边形(2)四点共面,理由如下:由BEFA,BEFA,G为FA的中点知,BEFG,BEFG,所以四边形BEFG为平行四边形,所以EFBG.由(1)知BGCH,所以EFCH,所以EF与CH共面又DFH,所以C,D,F,E四点共面三上台阶,自主选做志在冲刺名校1.如图所示,设E,F,G,H依次是空间四边形ABCD边AB,BC,CD,DA上除端点外的点,则下列结论中正确的是_(填序号)当时,四边形EFGH是平行四边形;当时,四边形EFGH是梯形;当时,四边形EFGH一定不是平行四边形;当时,四边形EFGH是梯形解析:由,得EHBD,且,同理得FGBD且,当时,EHFG且EHFG.当时,EHFG,但EHFG,所以正确,只有错误答案:2在正方体ABCDA1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有_条解析:如图,在A1D1上任取一点P,过点P与直线EF作一个平面,因为CD与平面不平行,所以它们相交,设CDQ,连结PQ,则PQ与EF必然相交,即PQ为所求直线由点P的任意性,知有无数条直线与A1D1,EF,CD都相交答案:无数3.如图所示,三棱柱ABC A1B1C1,底面是边长为2的正三角形,侧棱A1A底面ABC,点E,F分别是棱CC1,BB1上的点,点M是线段AC上的动点,EC2FB2.(1)当点M在何位置时,BM平面AEF?(2)若BM平面AEF,判断BM与EF的位置关系,说明理由;并求BM与EF所成的角的余弦值解:(1)法一:如图所示,取AE的中点O,连结OF,过点O作OMAC于点M.因为侧棱A1A底面ABC,所以侧面A1ACC1底面ABC.又因为EC2FB2,所以OMFBEC且OMECFB,所以四边形OMBF为矩形,BMOF.因为OF平面AEF,BM平面AEF,故BM平面AEF,此时点M为AC的中点法二:如图所示,取EC的中点P,AC的中点Q,连结PQ,PB,BQ.因为EC2FB2,所以PE綊BF,所以PQAE,PBEF,所以PQ平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高级建筑师设计原理模拟题集及解答指南
- 2025年电子商务运营助理初级面试指南与答案解析
- 2025年高考数学全真模拟题集及解题技巧指导含答案
- 2025年市场营销岗位面试题解析与实战技巧
- 2025年特岗教师招聘初中语文试题分析与技巧
- 2025年建筑工程师考试模拟试题集含答案详解
- 2025年特种作业类金属非金属矿山安全作业金属非金属矿山井下电气作业-金属非金属矿山支柱作业参考题库含答案解析
- 2025年特种作业类危险化学品安全作业裂解(裂化)工艺作业-过氧化工艺作业参考题库含答案解析
- 2025年特种作业类危险化学品安全作业胺基化工艺作业-胺基化工艺作业参考题库含答案解析
- 看云识天气课文原文课件
- 枣庄学院《图学基础与计算机绘图》2024-2025学年第一学期期末试卷
- GB 46031-2025可燃粉尘工艺系统防爆技术规范
- 养老护理员培训班课件
- 2025-2030城市矿产开发利用政策支持与商业模式创新报告
- 隔爆水棚替换自动隔爆装置方案及安全技术措施
- 产品线库存管理与补货预测系统
- 2025年高考(山东卷)历史真题及答案
- 医学减重管理体系
- 咯血与呕血的护理
- 初中历史教师培训讲座
- B2B信息流广告投放白皮书
评论
0/150
提交评论