




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11.4 数学归纳法【最新考纲解读】内 容要 求备注ABC推理与证明数学归纳法的原理对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.数学归纳法的简单应用【考点深度剖析】 1. 江苏高考中,经常考有难度的数学归纳法,利用归纳和类比的方法进行推理是新课标倡导的精神,主要考查学生探索创新能力.2. 数学归纳法既是方法,又是思想,更是能力.不仅需要归纳能力,更需要探究能力、创新能力、构造能力.做一些有难度的数学归纳法试题,有助于培养思维品质,提高分析问题及解决问题的能力.【课前检测训练】【判一判】判断下面结论是否正确(请在括号中打“”或“”)(1)用数学归纳法证明问题时,第一步是验证当n1时结论成立()(2)所有与正整数有关的数学命题都必须用数学归纳法证明()(3)用数学归纳法证明问题时,归纳假设可以不用()(4)不论是等式还是不等式,用数学归纳法证明时,由nk到nk1时,项数都增加了一项()(5)用数学归纳法证明等式“12222n22n31”,验证n1时,左边式子应为122223.()(6)用数学归纳法证明凸n边形的内角和公式时,n03.()1. 2. 3. 4. 5. 6. 【练一练】1用数学归纳法证明1aa2an1 (a1,nN*),在验证n1时,等式左边的项是()A1 B1aC1aa2 D1aa2a3【答案】C2在应用数学归纳法证明凸n边形的对角线为n(n3)条时,第一步检验n等于()A1 B2C3 D0【答案】C【解析】凸n边形边数最小时是三角形,故第一步检验n3.3已知f(n),则()Af(n)中共有n项,当n2时,f(2)Bf(n)中共有n1项,当n2时,f(2)Cf(n)中共有n2n项,当n2时,f(2)Df(n)中共有n2n1项,当n2时,f(2)【答案】D4设Sn1,则Sn1Sn_.【答案】【解析】Sn11,Sn1,Sn1Sn.5已知an满足an1anan1,nN*,且a12,则a2_,a3_,a4_,猜想an_.【答案】345n1【题根精选精析】考点:数学归纳法【1-1】用数学归纳法证明“”()时,从 “”时,左边应增添的式子是 【答案】【解析】当时,左边为:;当时,左边为:,左边多了 【1-2】用数学归纳法证明“n3(n1)3(n2)3(nN*)能被9整除”,要利用归纳假设证nk1时的情况,只需展开 【答案】(k3)3【1-3】若,则对于, 【答案】【解析】【1-4】在数列中,且.(1)求、,猜想的表达式,并加以证明;(2)设,求证:对任意的自然数,都有;由归纳原理知,;(2),证毕!【1-5】设,其中为正整数(1)求,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想【解析】(1) (2)猜想: 【基础知识】1. 一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法根据推理过程中考查的对象是涉及事物的全体或部分可分为完全归纳法和不完全归纳法2数学归纳法:设是一个与正整数相关的命题集合,如果:证明起始命题(或)成立;在假设成立的前提下,推出也成立,那么可以断定对一切正整数成立3. 用数学归纳法证明一个与正整数有关的命题时,其步骤为:归纳奠基:证明当取第一个自然数时命题成立;归纳递推:假设,(,)时,命题成立,证明当时,命题成立;由得出结论【思想方法】1. 明确数学归纳法的两步证明数学归纳法是一种只适用于与正整数有关的命题的证明方法,它们的表述严格而且规范,两个步骤缺一不可第一步是递推的基础,第二步是递推的依据,第二步中,归纳假设起着“已知条件”的作用,在nk1时一定要运用它,否则就不是数学归纳法第二步的关键是“一凑假设,二凑结论”2. 用数学归纳法证明等式应注意的问题(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,以及初始值的值(2)由到时,除考虑等式两边变化的项外还要充分利用时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明弄清左端应增加的项,明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等简言之:两个步骤、一个结论;递推基础不可少,归纳假设要用到,结论写明莫忘掉3. 数学归纳法证明不等式的注意问题(1)当遇到与正整数有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法(2)用数学归纳法证明不等式的关键是由成立,推证时也成立,证明时用上归纳假设后,可采用分析法、综合法、作差(作商)比较法、放缩法等证明4. “归纳猜想证明”的模式,是不完全归纳法与数学归纳法综合应用的解题模式其一般思路是:通过观察有限个特例,猜想出一般性的结论,然后用数学归纳法证明这种方法在解决探索性问题、存在性问题或与正整数有关的命题中有着广泛的应用其关键是观察、分析、归纳、猜想,探索出一般规律5. 使用数学归纳法需要注意的三个问题在使用数学归纳法时还要明确:(1)数学归纳法是一种完全归纳法,其中前两步在推理中的作用是:第一步是递推的基础,第二步是递推的依据,二者缺一不可;(2)在运用数学归纳法时,要注意起点,并非一定取1,也可能取0,2等值,要看清题目;(3)第二步证明的关键是要运用归纳假设,特别要弄清楚由到时命题变化的情况6. 数学归纳法常用于与正整数有关命题的证明可用数学归纳法例如根据递推公式写出数列的前几项,通过观察项与项数的关系,猜想出数列的通项公式,再用数学归纳法进行证明,初步形成“观察归纳猜想证明”的思维模式;利用数学归纳法证明不等式时,要注意放缩法的应用,放缩的方向应朝着结论的方向进行,可通过变化分子或分母,通过裂项相消等方法达到证明的目的【温馨提醒】这两个题都是数学归纳法的应用,用数学归纳法证明与正整数有关的一些等式命题时,关键在于弄清等式两边的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025瓷砖产品进出口贸易代理合同
- 2025年度特色订餐服务合同范本
- 2025版高标准预制砌块施工合同
- 2025年多媒体短信息服务合同五
- 2025产品陈列与售后服务合作协议
- 2025年度三七药材种植户贷款担保与购销合同
- 2025常用合同系列之动漫游戏行业劳动合同范本
- 诸城市2024-2025学年中考试题猜想数学试卷含解析
- 养老机构医养结合模式下的养老产品创新与研发报告
- 海洋风力发电市场前景:2025年海上风能资源评估与发展研究报告
- 2025年事业单位工勤技能-河南-河南农业技术员一级(高级技师)历年参考题库含答案解析(5卷套题【单选100题】)
- (新教材)2025年秋期人教版二年级上册数学核心素养教案(第2单元)(教学反思有内容+二次备课版)
- (高清版)DB34∕T 5154-2025 基于云制造的工业互联网架构要求
- 党校中青班入学考试试题及答案
- 三支一扶培训
- 2025年中国儿童游乐设施产业深度调研与投资机遇研究报告
- 新生儿42天体检要点解析
- 煤矿联网课题题目及答案
- 2025内蒙古巴彦淖尔市能源(集团)有限公司招聘48人笔试参考题库附带答案详解析集合
- T/CASTEM 1007-2022技术经理人能力评价规范
- 初中七年级数学备课组科研合作计划
评论
0/150
提交评论