




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第六节,Green 公式,Gauss 公式,推广,一、高斯公式,二、通量与散度,机动 目录 上页 下页 返回 结束,高斯公式 通量与散度,第十章,一、高斯 ( Gauss ) 公式,定理1. 设空间闭区域 由分片光滑的闭曲, 上有连续的一阶偏导数 ,下面先证:,函数 P, Q, R 在,面 所围成, 的方向取外侧,则有,(Gauss 公式),高斯 目录 上页 下页 返回 结束,证明: 设,为XY型区域 ,则,定理1 目录 上页 下页 返回 结束,所以,若 不是 XY型区域 ,则可引进辅助面,将其分割成若干个 XY型区域,故上式仍成立 .,正反两侧面积分正负抵消,在辅助面,类似可证,三式相加, 即得所证 Gauss 公式:,定理1 目录 上页 下页 返回 结束,例1. 用Gauss 公式计算,其中 为柱面,闭域 的整个边界曲面的外侧.,解: 这里,利用Gauss 公式, 得,原式 =,(用柱坐标),及平面 z = 0 , z = 3 所围空间,思考: 若 改为内侧, 结果有何变化?,若 为圆柱侧面(取外侧) , 如何计算?,机动 目录 上页 下页 返回 结束,例2. 利用Gauss 公式计算积分,其中 为锥面,解: 作辅助面,取上侧,介于 z = 0 及,z = h 之间部分的下侧.,所围区域为,则,机动 目录 上页 下页 返回 结束,利用重心公式, 注意,机动 目录 上页 下页 返回 结束,例3.,设 为曲面,取上侧, 求,解:,作取下侧的辅助面,用柱坐标,用极坐标,机动 目录 上页 下页 返回 结束,在闭区域 上具有一阶和,二阶连续偏导数, 证明格林( Green )第一公式,例4. 设函数,其中 是整个 边界面的外侧.,分析:,高斯公式,机动 目录 上页 下页 返回 结束,证:令,由高斯公式得,移项即得所证公式.(见 P171),机动 目录 上页 下页 返回 结束,二、通量与散度,引例.,设稳定流动的不可压缩流体的密度为1,速度场为,理意义可知,设 为场中任一有向曲面,单位时间通过曲面 的流量为,则由对坐标的曲面积分的物,由两类曲面积分的关系, 流量还可表示为,机动 目录 上页 下页 返回 结束,若 为方向向外的闭曲面,当 0 时,说明流入 的流体质量少于,当 0 时,说明流入 的流体质量多于流出的,则单位时间通过 的流量为,当 = 0 时,说明流入与流出 的流体质量相等 .,流出的,表明 内有泉;,表明, 内有洞 ;,根据高斯公式, 流量也可表为,机动 目录 上页 下页 返回 结束,方向向外的任一闭曲面 ,记 所围域为,设 是包含点 M 且,为了揭示场内任意点M 处的特性,在式两边同除以 的体积 V,并令 以,任意方式缩小至点 M,则有,此式反应了流速场在点M 的特点:,其值为正,负或 0,分别反映在该点有流体涌出, 吸入, 或没有任何变化.,机动 目录 上页 下页 返回 结束,定义:,设有向量场,其中P, Q, R 具有连续一阶偏导数, 是场内的一片有向,则称,曲面,有向曲面 的通量(流量) .,在场中点 M(x, y, z) 处,divergence,机动 目录 上页 下页 返回 结束,表明该点处有正源,表明该点处有负源,表明该点处无源,散度绝对值的大小反映了源的强度.,例如, 匀速场,故它是无源场.,P16 目录 上页 下页 返回 结束,说明:,由引例可知, 散度是通量对体积的变化率, 且,内容小结,1. 高斯公式及其应用,公式:,应用:,(1) 计算曲面积分,(非闭曲面时注意添加辅助面的技巧),机动 目录 上页 下页 返回 结束,2. 通量与散度,思考与练习,所围立体,判断下列演算是否正确?,(1),(2), 为,机动 目录 上页 下页 返回 结束,备用题 设 是一光滑闭曲面,所围立体 的体, 是 外法线向量与点 ( x , y , z ) 的向径,试证,证: 设 的单位外法向量为,则,的夹角,积为V,机动 目录 上页 下页 返回 结束,高斯(1777 1855),德国数学家、天文学家和物理学家,是与阿基米德, 牛顿并列的伟大数学家,他的数学成就遍及各个领域 ,在数论、,级数、复变函数及椭圆函数论等方面均有一系列开创,性的贡献,他还十分重视数学的应用,地测量学和磁学的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版空调设备能源管理系统采购合同范本下载
- 二零二五年度国际结算国内信用证交易合同书
- 安徽省淮南市大通区2023-2024学年高二上学期期末考试数学试卷及答案
- 安徽省蚌埠市淮上区2022-2023学年高三下学期高考二模历史题目及答案
- 2025 年小升初邢台市初一新生分班考试数学试卷(带答案解析)-(北师大版)
- 2025 年小升初济南市初一新生分班考试数学试卷(带答案解析)-(苏教版)
- 医疗机构耳念珠菌医院感染防控指引(2025年版)试题
- 中国儿童遗尿症疾病管理专家共识解读课件
- 管理学原理(00054)自考真题+答案2025年7月
- 相约2025年冬奥征文10篇
- 肝性脑病疑难病例讨论
- 老年护理培训课件大全
- 消防相亲联谊活动方案
- 【基于西门子s7-1200的恒压供水控制系统设计13000字】
- 教育信息化技术工具在课堂中的实践
- 公共建筑节能改造技术实施方案
- 钉钉操作培训课件
- 集体备课培训课件
- 盐酸运输安全管理制度
- 仓库管理5管理制度
- 2025至2030中国建筑劳务行业发展分析及产业运行态势及投资规划深度研究报告
评论
0/150
提交评论