




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常系数非齐次线性微分方程,第九节,一、,二、,二阶常系数线性非齐次微分方程 :,根据解的结构定理 , 其通解为,求特解的方法,根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 ., 待定系数法,一、, 为实数 ,设特解为,其中 为待定多项式 ,代入原方程 , 得,(1) 若 不是特征方程的根,则取,从而得到特解,形式为,为 m 次多项式 .,Q (x) 为 m 次待定系数多项式,为m 次多项式,故特解形式为,(3) 若 是特征方程的重根 ,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程 .,即,即,当 是特征方程的 k 重根 时,可设,特解,例1.,的一个特解.,解: 本题,而特征方程为,不是特征方程的根 .,设所求特解为,代入方程 :,比较系数, 得,于是所求特解为,例2.,的通解.,解: 本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数, 得,因此特解为,代入方程得,所求通解为,例3. 求解定解问题,解: 本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,二、,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根 ( k = 0, 1),上述结论也可推广到高阶方程的情形.,例4.,的一个特解 .,解: 本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数 , 得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数, 得,因此特解为,代入方程:,所求通解为,为特征方程的单根 ,因此设非齐次方程特解为,例6.,解: (1) 特征方程,有二重根,所以设非齐次方程特解为,(2) 特征方程,有根,利用叠加原理 , 可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,内容小结, 为特征方程的 k (0, 1, 2) 重根,则设特解为,为特征方程的 k (0, 1 )重根,则设特解为,3. 上述结论也可推广到高阶方程的情形.,思考与练习,时可设特解为,时可设特解为,提示:,1 . (填空) 设,2. 求微分方程,的通解 (其中,为实数 ) .,解: 特征方程,特征根:,对应齐次方程通解:,时,代入原方程得,故原方程通解为,时,代入原方程得,故原方程通解为,3. 已知二阶常微分方程,有特解,求微分方程的通解 .,解: 将特解代入方程得恒等式,比较系数得,故原方程为,对应齐次方程通解:,原方程通解为,欧拉方程,常系数线性微分方程,欧拉方程的算子解法:,则,则由上述计算可知:,用归纳法可证,于是欧拉方程,转化为常系数线性方程:,例1.,解:,则原方程化为,亦即,其根,则对应的齐次方程的通解为,特征方程, 的通解为,换回原变量, 得原方程通解为,设特解:,代入确定系数, 得,例2.,解:,将方程化为,(欧拉方程),则方程化为,即,特征根:,设特解:,代入 解得 A =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州中医药大学第一附属医院第十三届贵州人才博览会引才21人模拟试卷参考答案详解
- 2025贵州黔西南州望谟县消防救援大队招聘政府专职消防文员1人模拟试卷带答案详解
- 2025江苏南通市海门区民政局招聘包场镇民政公益性岗位人员招聘2人考前自测高频考点模拟试题及答案详解(典优)
- 2025内蒙古阿拉善盟赛汗人力资源服务有限公司招聘10人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年甘肃省庆阳市新庄煤矿面向社会招聘生产性灵活用工206人考前自测高频考点模拟试题带答案详解
- 2025北京市检察机关聘用制司法辅助人员招聘147人模拟试卷及答案详解(夺冠系列)
- 2025年4月深圳市深汕特别合作区招聘事务员38人考前自测高频考点模拟试题及1套完整答案详解
- 2025吉林长春经济技术开发区人民法院面向社会招聘审判辅助人员聘用人员模拟试卷及答案详解(典优)
- 2025安徽艺术学院高层次人才招聘30人考前自测高频考点模拟试题(含答案详解)
- 2025广东广州市海珠区招聘事业单位工作人员19人模拟试卷及答案详解(各地真题)
- 2022智慧园区设计、建设与验收技术规范
- 自备车补贴申请表
- 注塑成型技术培训之工艺理解课件
- 信息论与编码(第4版)完整全套课件
- 广西佑太药业有限责任公司医药中间体项目环评报告书
- 汽修厂安全风险分级管控清单
- 海绵城市公园改造施工组织设计
- 上体自编教材-体育运动概论-模拟
- 05625《心理治疗》案例分析
- GB/T 2679.7-2005纸板戳穿强度的测定
- GB/T 25840-2010规定电气设备部件(特别是接线端子)允许温升的导则
评论
0/150
提交评论