《D66极值与最值》PPT课件.ppt_第1页
《D66极值与最值》PPT课件.ppt_第2页
《D66极值与最值》PPT课件.ppt_第3页
《D66极值与最值》PPT课件.ppt_第4页
《D66极值与最值》PPT课件.ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,第六章,第六节,一、二元函数的极值,二、最值应用问题,三、条件极值,二元函数的极值和最值,四、最小二乘法,一、 二元函数的极值,定义6.7 若函数,则称函数在该点取得极大值,例如 :,在点 (0,0) 有极小值;,在点 (0,0) 有极大值;,在点 (0,0) 无极值.,极大值和极小值,统称为极值,使函数取得极值的点称为极值点.,的某邻域内有,(极小值).,说明: 使偏导数都为 0 的点称为驻点 .,例如,定理6.4 (必要条件),函数,偏导数,证:,据一元函数极值的必要条件可知定理结论成立.,取得极值 ,取得极值,取得极值,但驻点不一定是极值点.,有驻点( 0, 0 ),但在该点不取极值.,且在该点取得极值 ,则有,存在,故,时, 具有极值,定理6.5 (充分条件),的某邻域内具有一阶和二阶连续偏导数,令,则: 1) 当,A0 时取极大值;,A0 时取极小值.,2) 当,3) 当,证明略 .,时, 不是极值点.,时, 不能确定 , 需另行讨论.,若函数,且,例1.,求函数,解: 第一步 求驻点.,得驻点: (1, 0) , (1, 2) , (3, 0) , (3, 2) .,第二步 判别.,在点(1,0) 处,为极小值;,解方程组,的极值.,求二阶偏导数,在点(3,0) 处,不是极值;,在点(3,2) 处,为极大值.,在点(1,2) 处,不是极值;,二、最值应用问题,函数 f 在有界闭域上连续,函数 f 在有界闭域上可达到最值,最值可疑点,驻点,边界上的最值点,特别, 当区域内部最值存在, 且只有一个极值点P 时,为极小值,为最小值,(大),(大),依据,例2.,解: 设水箱长,宽分别为 x , y m ,则高为,则水箱所用材料的面积为,令,得驻点,某厂要用铁板做一个体积为2,根据实际问题可知最小值在定义域内应存在,的有盖长方体水,箱,问当长、宽、高各取怎样的尺寸时, 才能使用料最省?,因此可,断定此唯一驻点就是最小值点.,即当长、宽均为,高为,时, 水箱所用材料最省.,三、条件极值,极值问题,无条件极值:,条 件 极 值 :,条件极值的求法:,方法1 代入法.,求一元函数,的无条件极值问题,对自变量只有定义域限制,对自变量除定义域限制外,还有其它条件限制,例如 ,转化,方法2 拉格朗日乘数法.,分析:如方法 1 所述,则问题等价于一元函数,可确定隐函数,的极,故极值点必满足,记,例如,值问题,故有,引入辅助函数,辅助函数F 称为拉格朗日( Lagrange )函数.,利用拉格,极值点必满足,则极值点满足:,朗日函数求极值的方法称为拉格朗日乘数法.,例3.,要设计一个容量为,则问题为求x , y ,令,解方程组,解: 设 x , y , z 分别表示长、宽、高,下水箱表面积,最小.,z 使在条件,水箱长、宽、高等于多少时所用材料最省?,的长方体开口水箱,试问,得唯一驻点,由题意可知合理的设计是存在的,长、宽为高的 2 倍时,所用材料最省.,因此 , 当高为,思考:,当开口水箱底部的造价为侧面的二倍时, 欲使造价,应如何设拉格朗日函数? 长、宽、高尺寸如何?,提示:,长、宽、高尺寸相等 .,最省,推广,拉格朗日乘子法可推广到多个自变量和多个约束条件的情形.,设,解方程组,可得到条件极值的可疑点 .,例如, 求函数,下的极值.,在条件,问题的提出:,已知一组实验数据,求它们的近似函数关系 yf (x) .,需要解决两个问题:,1. 确定近似函数的类型,根据数据点的分布规律,根据问题的实际背景,2. 确定近似函数的标准,实验数据有误差,不能要求,四、最小二乘法,偏差,有正有负,值都较小且便于计算,可由偏差平方和最小,为使所有偏差的绝对,来确定近似函数 f (x) .,最小二乘法原理:,设有一列实验数据,分布在某条曲线上,通过偏差平方和最小求该曲线的方,法称为最小二乘法,找出的函数关系称为经验公式 ., 它们大体,特别, 当数据点分布近似一条直线时,问题为确定 a, b,令,满足:,使,得,称为法方程组,解此线性方程组 即得 a, b,进一步,可以验证,所以,因此直线,确为所求。,例1.,为了测定刀具的磨损速度, 每隔 1 小时测一次刀,具的厚度, 得实验数据如下:,找出一个能使上述数据大体适合的经验公式.,解: 通过在坐标纸上描点可看出它们,大致在一条直线上,列表计算:,故可设经验公式为,得法方程组,解得,故所求经验公式为,内容小结,1. 函数的极值问题,第一步 利用必要条件在定义域内找驻点.,即解方程组,第二步 利用充分条件 判别驻点是否为极值点 .,2. 函数的条件极值问题,(1) 简单问题用代入法,如对二元函数,(2) 一般问题用拉格朗日乘子法,设拉格朗日函数,如求二元函数,下的极值,解方程组,第二步 判别, 比较驻点及边界点上函数值的大小, 根据问题的实际意义确定最值,第一步 找目标函数, 确定定义域 ( 及约束条件),3. 函数的最值问题,在条件,求驻点 .,4. 最小二乘法,P266 26(2)(4); 27; 28; 30,习题课,作业,P269 11,1.,假设某企业在两个相互分割的市场上出售同,一种产品,,总成本函数为,两个市场的需求函数分别是,其中p1, p2为售价,Q1, Q2为销售量,,(1) 如果该企业实行价格差别策略,试确定两市场上该产品的销售量和价格,使企业获得最大利润;,(2) 如果该企业实行价格无差别策略,试确定两市场上该产品的销售量和统一价格,使企业获得最大利润,并比较两种策略下的最大利润。,思考与练习,解.,(1) 总利润函数为,由,得 Q1=4, Q2=5,这时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论