




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量应用举例,用向量的方法研究平面几何,平面几何中的向量方法,向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。,问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,猜想:,1.长方形对角线的长度与两条邻边长度之间有何关系?,2.类比猜想,平行四边形有相似关系吗?,例1、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。 求证:,解:设 ,则,分析:因为平行四边形对边平行且相 等,故设 其它线段对应向 量用它们表示。,你能总结一下利用向量法解决平面几何问题的基本思路吗?,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,简述:形到向量 向量的运算 向量和数到形,例2 如图, ABCD中,点E、F分别是AD 、 DC边的中点,BE 、 BF分别与AC交于R 、 T两点,你能发现AR 、 RT 、TC之间的关系吗?,猜想: AR=RT=TC,解:设 则,由于 与 共线,故设,又因为 共线, 所以设,因为 所以,线,,故AT=RT=TC,练习、证明直径所对的圆周角是直角,分析:要证ACB=90,只须证向 量 ,即 。,解:设 则 , 由此可得:,即 ,ACB=90,思考:能否用向量 坐标形式证明?,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备考2025年浙江省杭州市辅警协警笔试笔试真题(含答案)
- 浦发银行北京市石景山区2025秋招小语种岗笔试题及答案
- 浦发银行广州市番禺区2025秋招面试典型题目及参考答案
- 招商银行黄石市大冶市2025秋招半结构化面试题库及参考答案
- 兴业银行大连市旅顺口区2025秋招笔试英语题专练及答案
- 民生银行重庆市渝北区2025秋招笔试专业知识题专练及答案
- 华夏银行青岛市胶州市2025秋招小语种岗笔试题及答案
- 兴业银行贵阳市云岩区2025秋招笔试EPI能力测试题专练及答案
- 招商银行三明市三元区2025秋招笔试热点题型专练及答案
- 招商银行台州市温岭市2025秋招笔试英文行测高频题含答案
- 法治护航-健康成长课件
- PRO-3M-教材教学课件
- 护理重点专科评审解读
- 体育与健康课程标准2022版考试题目含答案
- 内科消化道出血诊疗规范
- 城市污水处理厂运行承诺及保障措施
- 牛顿课件教学课件
- 2025民乐辅警考试真题
- 2025年吉林省中考数学试卷真题(含答案详解)
- 综治中心培训课件
- 2025-2030中国生物石脑油市场发展现状与未来前景动态研究报告
评论
0/150
提交评论