




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节 数量积与向量积,一、两向量的数量积,二、两向量的向量积,一、两向量的数量积,沿与力夹角为,的直线移动,1. 定义,设向量,的夹角为 ,称,数量积,(点积) .,故,2. 性质,为两个非零向量,则有,3. 运算律,(1) 交换律,(2) 结合律,(3) 分配律,事实上, 当,时, 显然成立 ;,例1. 证明三角形余弦定理,证:,则,如图 . 设,4. 数量积的坐标表示,设,则,当,为非零向量时,由于,两向量的夹角公式, 得,例2. 已知三点, AMB .,解:,则,求,故,例4,应用向量证明直径所对的圆周角是直角,证,如图所示,圆的方程:,设 A 点的坐标为,则,二、两向量的向量积,引例. 设O 为杠杆L 的支点 ,有一个与杠杆夹角为,符合右手规则,1. 定义,定义,向量,方向 :,(叉积),记作,且符合右手规则,模 :,向量积 ,引例中的力矩,思考: 右图三角形面积,S,2. 性质,为非零向量, 则,3. 运算律,(2) 分配律,(3) 结合律,(证明思考),证明:,4. 向量积的坐标表示式,设,则,向量积的行列式计算法,( 行列式计算为线性代数内容 ),向量积的几何意义,解,例2. 已知三点,角形 ABC 的面积,解: 如图所示,求三,解,三角形ABC的面积为,例7,证,练习,2.证,3.解,思考与练习,1. 设,计算,并求,夹角 的正弦与余弦 .,答案:,2. 用向量方法证明正弦定理:,证: 由三角形面积公式,所以,因,向量的数量积,向量的向量积,(结果是一个数量),(结果是一个向量),四、小结,内容小结,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际贸易专员职业素质评估考试试题及答案解析
- 2025年村级物流安全员笔试冲刺题
- 课件专业评审表评价
- 课件与乐器的融合
- 2025年建筑设计师专业面试模拟题与案例分析
- 2025年竞聘笔试县公司电力电商解析题
- 2025年香材鉴别师初级笔试模拟试卷
- 2025年供销社考试模拟试卷及答案
- 应用写作孙秀秋教学课件
- 2025年安全生产法规考试十套题及答案
- 2025-2026秋学期学校主题升旗仪式安排表+主题班会安排表
- 提高住院病历完成及时性持续改进(PDCA)
- 《矿业权评估指南》
- 广东省地质灾害危险性评估报告
- 整套教学课件《现代心理与教育统计学》研究生
- 手机拍照技巧大全课件
- RBA(原EICC)ERT应急准备与响应培训课件
- 工业建筑钢筋工程监理实施细则
- 河西走廊课件
- 2023版北京协和医院重症医学科诊疗常规
- 人工膝关节置换术护理查房
评论
0/150
提交评论