

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
规范答题示例5数列的通项与求和问题典例5(12分)下表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,jN*)已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等且a111,a31a619,a3548.a11a12a13a1na21a22a23a2na31a32a33a3nan1an2an3ann(1)求an1和a4n;(2)设bn(1)nan1(nN*),求数列bn的前n项和Sn.审题路线图规范解答分步得分构建答题模板解(1)设第1列依次组成的等差数列的公差为d,设每一行依次组成的等比数列的公比为q.依题意a31a61(12d)(15d)9,d1,an1a11(n1)d1(n1)1n,3分a31a112d3,a35a31q43q448,q0,q2,又a414,a4na41qn142n12n1.6分(2)bn(1)nan1(1)nn7分(1)nn(1)nn,Sn12345(1)nn,10分当n为偶数时,Sn1,11分当n为奇数时,Sn1n1.12分第一步找关系:根据已知条件确定数列的项之间的关系第二步求通项:根据等差或等比数列的通项公式或利用累加、累乘法求数列的通项公式第三步定方法:根据数列表达式的结构特征确定求和方法(常用的有公式法、裂项相消法、错位相减法、分组法等)第四步写步骤第五步再反思:检查求和过程中各项的符号有无错误,用特殊项估算结果.评分细则(1)求出d给1分,求an1时写出公式结果错误给1分;求q时没写q0扣1分;(2)bn写出正确结果给1分,正确进行裂项再给1分;(3)缺少对bn的变形直接计算Sn,只要结论正确不扣分;(4)当n为奇数时,求Sn中间过程缺一步不扣分跟踪演练5(2017山东)已知an是各项均为正数的等比数列,且a1a26,a1a2a3.(1)求数列an的通项公式;(2)bn为各项非零的等差数列,其前n项和为Sn,已知S2n1bnbn1,求数列的前n项和Tn.解(1)设an的公比为q,由题意知a1(1q)6,aqa1q2,又an0,由以上两式联立方程组解得a12,q2,所以an2n.(2)由题意知S2n1(2n1)bn1,又S2n1bnbn1,bn
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年飞机盒项目发展计划
- 2025年营养强化剂项目建议书
- 抛光工安全培训
- 2025年法人大数据项目发展计划
- 福建省莆田市某校2024-2025学年五年级上学期第一次月考语文试题
- 抗浮锚杆施工工艺
- 自卑案例的题目及答案
- 高中必修考试例题及答案
- 2025年饮料灭菌乳项目建议书
- tcp协议的特点与特征
- 医学教育中的全科医学与专科医学的比较与协同
- 肠梗阻小讲课
- 马克思主义经典著作选读
- 食材配送沟通服务方案
- 机房建设清单
- 第09章-船舶甲板机械电力拖动及其电气控制
- 小学思政课《爱国主义教育》
- 城市轨道交通-前期咨询工作收费指导意见
- 前列腺癌的诊断与PI-RADS影像
- 现代物流基础PPT完整全套教学课件
- 华为解决方案营销五环十四招
评论
0/150
提交评论