




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,一、和、差、积、商的求导法则,二、反函数的导数,三、复合函数的求导法则,四、初等函数的求导问题,五、小结及作业,2,一、和、差、积、商的求导法则,定理,3,证(3),证(1)、(2)略.,4,5,推论,6,例1,解,例2,解,7,例3,解,同理可得,8,例4,解,同理可得,9,10,例6,解,11,12,二、反函数的导数,定理,即 反函数的导数等于直接函数导数的倒数.,13,证,于是有,14,15,例2,解,同理可得,16,同理可得,17,例2,解,特别地,18,三、复合函数的求导法则,定理,即 因变量对自变量求导,等于因变量对中间变量求导,乘以中间变量对自变量求导.(链式法则),19,证,20,推广,例3,解,21,例4,22,例5,解,例6,解,23,例7,24,25,26,例10,解,例11,解,27,例12,例13,28,四、初等函数的求导问题,1.常数和基本初等函数的导数公式,29,2.函数的和、差、积、商的求导法则,30,3.复合函数的求导法则,利用上述公式及法则初等函数求导问题可完全解决.,注意:初等函数的导数仍为初等函数.,31,例1.,求,解:,32,例2.,求,解:,33,例3,解,34,例4,解,二、双曲函数与反双曲函数的导数,35,五、小结,注意:,分段函数求导时, 分界点导数用左右导数求.,反函数的求导法则(注意成立条件);,36,复合函数的求导法则 (注意函数的复合过程,合理分解正确使用链导法);,已能求导的函数:可分解成基本初等函数,或常数与基本初等函数的和、差、积、商.,任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述求导法则求出.,关键: 正确分解初等函数的复合结构.,37,38,思考题,幂函数在其定义域内( ).,39,思考题解答,正确地选择是(3),例,在 处不可导,,在定义域内处处可导,,40,练 习 题,41,42,练习题答案,43,44,思考题,45,思考题解答,正确地选择是(3),例,在 处不可导,,取,在 处可导,,在 处不可导,,取,在 处可导,,在 处可导,,46,练 习 题,47,48,练习题答案,49,50,思考题,求曲线 上与 轴平行的切线方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 清远市重点中学2026届高二化学第一学期期末联考试题含答案
- 心理健康安全知识培训课件
- 2025-2030年中国机场扫地机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030工业互联网平台发展现状及未来商业模式与投资机会分析报告
- 伦理体系课件
- 市民宗委面试题库精 编版
- 2025年医院感染管理竞赛试题(附答案)
- 2025年突发公共卫生事件试题(附答案)
- 2025年脑瘫儿童言语训练障碍的评估试题
- 人体消化系统课件
- 新职员工安全培训
- 机械通气:异常波形解读
- 专题11初高衔接之计算补充练习新高一数学暑假衔接与新课重难点预习(人教A版2019)
- 涉县中小学教师招聘考试真题2023年
- 干膜讲义完整版本
- DL-T+5220-2021-10kV及以下架空配电线路设计规范
- 2024年三方资金监管协议
- 桥梁智慧健康监测技术标准
- 产品代理协议标准版可打印
- DZ∕T 0206-2020 矿产地质勘查规范 高岭土、叶蜡石、耐火粘土(正式版)
- 职业学院康复治疗技术专业人才培养方案
评论
0/150
提交评论