平面向量的几何应用.ppt_第1页
平面向量的几何应用.ppt_第2页
平面向量的几何应用.ppt_第3页
平面向量的几何应用.ppt_第4页
平面向量的几何应用.ppt_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,2.5.1平面向量应用举例 辉县市第二高级中学 马忠鹤,学习目标:,1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的“三步曲” ; 2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示; 3.让学生深刻理解向量在处理平面几何问题中的优越性.,问题:平行四边形是表示向量加法与减法的 几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,猜想:,1.长方形对角线的长度与两 条邻边长度之间有何关系?,2.类比猜想,平行四边形 有相似关系吗?,例1、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。 求证:,解:设 ,则,例2 如图,平行四边形ABCD中,点E、F分别是AD 、DC边的中点,BE 、BF分别与AC交于R 、T两点,你能发现AR 、RT 、TC之间的关系吗?,猜想: AR=RT=TC,解:设 则 由于 与 共线,故设 又因为 共线, 所以设 因为 所以,线,,故AR=RT=TC,课时小结:,用向量方法解决平面几何问题的“三步曲”: (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系。 作业:练习册第5题,当堂检测:证明直径所对的圆周角是直角,如图所示,已知O,AB为直径,C为O上任意一点。求证ACB=90,解:设 则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论