




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四节 有理函数的积分,一、有理函数的积分 二、可化为有理函数的积分举例 1. 三角函数有理式的积分 2. 简单无理函数的积分 三、小结,有理函数的定义:,两个多项式的商表示的函数称之.,一、有理函数的积分,假定分子与分母之间没有公因式,这有理函数是真分式;,这有理函数是假分式;,利用多项式除法, 假分式可以化成一个多项式和一个真分式之和.,例,难点,将有理函数化为部分分式之和.,(1)分母中若有因式 ,则分解后为,有理函数化为部分分式之和的一般规律:,特殊地:,分解后为,特殊地:,分解后为,真分式化为部分分式之和的待定系数法,例1,代入特殊值来确定系数,取,取,取,并将 值代入,例2,例3,整理得,例4 求积分,解,例5 求积分,解,例6 求积分,解,令,说明,将有理函数化为部分分式之和后,只出现三类情况:,多项式;,讨论积分,令,则,记,这三类积分均可积出, 且原函数都是初等函数.,结论,有理函数的原函数都是初等函数.,二、可化为有理函数的积分举例,以下只讨论两种类型的函数的积分 1. 三角函数有理式的积分 2. 简单无理函数的积分,三角有理式的定义:,由三角函数和常数经过有限次四则运算构成的函数称之一般记为,1. 三角函数有理式的积分,(万能置换公式),例7 求积分,解,由万能置换公式,例8 求积分,解(一),解(二),修改万能置换公式,令,解(三),可以不用万能置换公式.,结论,比较以上三种解法, 便知万能置换不一定是最佳方法, 故三角有理式的计算中先考虑其它手段, 不得已才用万能置换.,例9 求积分,解,讨论类型,解决方法,作代换去掉根号.,例10 求积分,解 令,2. 简单无理函数的积分,例11 求积分,解 令,说明,无理函数去根号时, 取根指数的最小公倍数.,例12 求积分,解,先对分母进行有理化,原式,简单无理式的积分.,有理式分解成部分分式之和的积分.,(注意:必须化成真分式),三角有理式的积分.(万能置换公式),(注意:万能公式并不万能),三、小结,思考题,将分式分解成部分分式之和时应注意什么?,思考题解答,分解后的部分分式必须是最简分式.,第五节 积分表的使用,一、关于积分表的说明 二、例题,(1)常用积分公式汇集成的表称为积分表.,(2)积分表是按照被积函数的类型来排列的.,(4)积分表见高等数学(第五版)上册 (同济大学应用数学系主编)第347页,(3)求积分时,可根据被积函数的类型直接 或经过简单变形后,查得所需结果.,一、关于积分表的说明,例1 求,被积函数中含有,在积分表(一)中查得公式(7),现在,于是,二、例题,例2 求,被积函数中含有三角函数,在积分表(十一)中查得此类公式有两个,选公式(105),将 代入得,例3 求,表中不能直接查出, 需先进行变量代换.,令,被积函数中含有,在积分表(六)中查得公式(37),将 代入得,例4 求,在积分表(十一)中查得公式(95),利用此公式可使正弦的幂次减少两次, 重复使用可使正弦的幂次继续减少, 直到求出结果. 这个公式叫递推公式.,现在,于是,对积分 使用公式(93),说明,初等函数在其定义域内原函数一定存在,但原函数不一定都是初等函数.,例,作业,P218 习题4-4 2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业论文侧面装订
- 2024年院感考试题及答案
- 菊花毕业论文
- 2024年房地产经纪协理考试题库含答案(巩固)
- 2024年医院耳鼻喉科工作总结及2025年工作计划
- 施工单位开工仪式精彩致辞
- 2025年一年级科任教师会议记录范文
- 2025年度校地合作促进体育产业发展合作协议书
- 2025年度服装厂与环保组织的废弃物回收利用合同
- 《语言学概论与汉语方言研究入门》
- 中医康复技术专业教学标准(中等职业教育)2025修订
- 小学生防欺凌课件
- 2025-2030年中国生物质能发电行业市场深度调研及投资策略与投资前景预测研究报告
- 2025新高考英语Ⅱ卷真题听力原文
- 2026版步步高大一轮高考数学复习讲义第三章 进阶篇 不等式恒(能)成立问题 进阶2 参数半分离与主元变换含答案
- 2025年中国数位式照度计市场调查研究报告
- 净化板材料安装合同范本
- 中国NAD+ 增强剂行业市场占有率及投资前景预测分析报告
- 江苏省扬州市2023-2024学年高一下学期6月期末考试英语试题(含答案)
- T/CIE 167-2023企业级固态硬盘测试规范第3部分:可靠性测试
- 遗址公园建设项目可行性研究报告
评论
0/150
提交评论