




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 绝对值不等式的解法,第一讲 二 绝对值不等式,学习目标 1.会利用绝对值的几何意义求解以下类型的不等式:|axb|c,|axb|c,|xa|xb|c,|xa|xb|c. 2.理解并掌握绝对值不等式的几种解法,并能根据不等式的结构特征选择适当方法求解.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 |axb|c和|axb|c型不等式的解法,思考1 |x|2说明实数x有什么特征?,答案 x在数轴上对应的点x到原点的距离大于等于2. x2或x2.,思考2 若|2x3|5,求x的取值范围.,答案 x|1x4.,梳理 (1)含绝对值不等式|x|a与|x|a的解法,|x|a,axa(a0), (a0).,|x|a,(a0), (a0), (a0).,xa或xa,R,xR且x0,(2)|axb|c(c0)和|axb|c(c0)型不等式的解法 |axb|c , |axb|c .,caxbc,axbc或axbc,知识点二 |xa|xb|c和|xa|xb|c型不等式的解法,思考 如何去掉|xa|xb|的绝对值符号?,答案 采用零点分段法.即令|xa|xb|0,得 x1a,x2b,(不妨设ab),梳理 |xa|xb|c和|xa|xb|c型不等式的解法 (1)利用绝对值不等式的 求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键. (2)以绝对值的“ ”为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键. (3)通过构造函数,利用函数的图象求解,体现函数与方程的思想,正确求出函数的零点并画出函数图象(有时需要考查函数的增减性)是解题关键. 特别提醒:解含绝对值不等式的关键是去掉绝对值符号,去绝对值符号的关键是“零点分段”法.,几何意义,零点,题型探究,类型一 |axb|c与|axb|c(c0)型的不等式的解法,例1 解下列不等式: (1)|5x2|8;,解答,(2)2|x2|4.,由得x22或x22,x0或x4, 由得4x24,2x6. 原不等式的解集为x|2x0或4x6.,解答,反思与感悟 |axb|c和|axb|c型不等式的解法 (1)当c0时,|axb|caxbc或axbc, |axb|ccaxbc. (2)当c0时,|axb|c的解集为R,|axb|c的解集为. (3)当c0时,|axb|c的解集为R,|axb|c的解集为.,跟踪训练1 解关于x的不等式: |x1|4|2.,解 |x1|4|22|x1|422|x1|6,不等式|x1|4|2的解集为x|5x1或3x7.,解答,类型二 |xa|xb|c和|xa|xb|c(c0)型不等式的解法,例2 解关于x的不等式:|3x2|x1|3.,解答,解 方法一 分类(零点分段)讨论法,代数式|3x2|x1|有不同的解析表达式,因而原不等式的解集为以下三个不等式组解集的并集.,|3x2|x1|23x1x34x,,|3x2|x1|3x21x2x1,,因为当x1时,|3x2|x1|3x2x14x3,,于是原不等式的解集为以上三个不等式组解集的并集,,方法二 构造函数f(x)|3x2|x1|3, 则原不等式的解集为x|f(x)0.,作出函数f(x)的图象,如图.,反思与感悟 |xa|xb|c,|xa|xb|c(c0)型不等式的三种解法:分区间(零点分段)讨论法、图象法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图象法直观,但只适用于数据较简单的情况.,跟踪训练2 解不等式|x7|x2|3.,解答,解 方法一 |x7|x2|可以看成数轴上的动点(坐标为x)到对应点7的距离与到对应点2的距离的差,先找到这个差等于3的点,即x1. 由图易知不等式|x7|x2|3的解为x1,即x(,1.,方法二 令x70,得x7,令x20,得x2. 当x7时,不等式变为x7x23, 93成立,x7.,当7x2时,不等式变为x7x23, 即2x2,x1,7x1. 当x2时,不等式变为x7x23, 即93不成立,x. 原不等式的解集为(,1. 方法三 将原不等式转化为|x7|x2|30, 构造函数y|x7|x2|3,,作出函数的图象,由图象可知, 当x1时,y0, 即|x7|x2|30, 原不等式的解集为(,1.,类型三 含绝对值不等式的恒成立问题,例3 已知函数f(x)|2x1|2xa|. (1)当a3时,求不等式f(x)6的解集;,解答,解 当a3时,f(x)|2x1|2x3|, f(x)6,等价于|2x1|2x3|60, 令g(x)|2x1|2x3|6,,作yg(x)的图象,如图,,f(x)6的解集为1,2.,(2)若关于x的不等式f(x)a恒成立,求实数a的取值范围.,解 f(x)|2x1|2xa|(2x1)(2xa)|a1|, f(x)min|a1|. 要使f(x)a恒成立,只需|a1|a成立即可. 由|a1|a,得a1a或a1a,,解答,引申探究 若f(x)|2x1|2xa|且f(x)a恒成立,求a的取值范围.,解 f(x)|2x1|2xa|(2x1)(2xa)| |a1|,f(x)max|a1|. f(x)a恒成立,|a1|a,aa1a,,解答,反思与感悟 不等式解集为R或为空集时,都可以转化为不等式恒成立问题.f(x)a恒成立f(x)maxa,f(x)a恒成立f(x)mina.,跟踪训练3 已知不等式|x2|x3|m.根据以下情形分别求出m的取值范围. (1)若不等式有解;,解答,解 方法一 因为|x2|x3|的几何意义为数轴上任意一点P(x)与两定点A(2),B(3)距离的差, 即|x2|x3|PA|PB|. 则(|PA|PB|)max1,(|PA|PB|)min1.即1|x2|x3|1. 若不等式有解,m只要比|x2|x3|的最大值小即可,即m1,m的取值范围为(,1). 方法二 由|x2|x3|(x2)(x3)|1, |x3|x2|(x3)(x2)|1, 可得1|x2|x3|1. 若不等式有解,则m(,1).,(2)若不等式的解集为R;,解 方法一 若不等式的解集为R, 即不等式恒成立,m只要比|x2|x3|的最小值还小, 即m1,m的取值范围为(,1). 方法二 若不等式的解集为R, 则m(,1).,解答,(3)若不等式的解集为.,解 方法一 若不等式的解集为,m只要不小于|x2|x3|的最大值即可,即m1,m的取值范围为1,). 方法二 若不等式的解集为,则m1,).,解答,达标检测,1.不等式|x1|3的解集是 A.x|x4或x2 B.x|4x2 C.x|x4或x2 D.x|4x2,1,2,3,4,解析 |x1|3,则x13或x13, 因此x4或x2.,解析,答案,5,1,2,3,4,5,答案,解析,1,2,3,4,5,3.不等式|x1|x2|5的所有实数解的集合是 A.(3,2) B.(1,3) C.(4,1),解析 |x1|x2|表示数轴上一点到2,1两点的距离之和, 根据2,1之间的距离为1,可得到与2,1距离和为5的点是4,1. 因此|x1|x2|5解集是(4,1).,解析,答案,1,2,3,4,5,4.已知x为实数,且|x5|x3|m有解,则m的取值范围是 A.m1 B.m1 C.m2 D.m2,解析 |x5|x3|(x5)(x3)|2, m2.,解析,答案,1,2,3,4,5,5.解不等式|2x1|3x2|8.,解答,|2x1|3x2|812x(3x2)8,|2x1|3x2|812x3x28x5, x.,1,2,3,4,5,|2x1|3x2|85x18,1,2,3,4,5,1.解不等式|axb|c,|axb|c (1)当c0时,|axb|ccaxbc,解之即可;|axb|caxbc或axbc,解之即可. (2)当c0时,由绝对值的定义知|axb|c的解集为,|axb|c的解集为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农小蜂年度中国肉类生产及分布数据分析报告
- 2025年工业互联网平台SDN优化与5G通信技术在工业互联网中的应用报告
- 2025年农业灌溉用水高效利用与水资源优化配置报告
- 2025年绿色供应链管理在调味品制造业的应用与推广研究报告
- 智能矿山无人作业系统在煤炭开采中的应用研究与发展报告
- 2025年线下演出市场复苏后的经济效益与社会影响研究报告
- 基于区块链技术的2025年零售企业数字化供应链协同安全报告
- 06年司法局上半年工作总结
- 2025年装配式建筑部品部件生产流程优化与标准化创新案例分析报告
- 核电项目日常管理制度
- 专项8 非连续性文本阅读- 2022-2023学年五年级语文下册期末专项练习
- DB34T 1948-2013 建设工程造价咨询档案立卷标准
- 江西省南昌市西湖区2023-2024学年五年级下学期期末数学试题
- 紫罗兰永恒花园
- 体育器材采购设备清单
- 第4章 颌位(双语)
- 二手车鉴定评估报告书最终
- 电影场记表(双机位)
- 塔吊负荷试验方案
- 电子商务专业“产教融合、五双并行”人才培养 模式的实践研究课题论文开题结题中期研究报告(经验交流)
- 购买社区基本公共养老、青少年活动服务实施方案
评论
0/150
提交评论