大学物理实验-绪论.ppt_第1页
大学物理实验-绪论.ppt_第2页
大学物理实验-绪论.ppt_第3页
大学物理实验-绪论.ppt_第4页
大学物理实验-绪论.ppt_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙大宁波理工学院 唐九耀,大学物理实验,绪论,冬夜读书示子聿,陆游,古人学问无遗力, 少壮功夫老始成。 纸上得来终觉浅, 绝知此事要躬行。,观 书 有 感,朱熹,半亩方塘一鉴开, 天光云影共徘徊。 问渠哪得清如许? 为有源头活水来。,一. 绪论,物理学是研究自然界物质运动规律的学科, 研究的基本方法是实验. 大学物理实验是培养学生综合应用能力和成为高素质科技人才的重要基础课.,1. 课程的目的与要求,大学物理实验的重要任务是验证物理规律, 锻炼动手能力, 学习数据处理, 培养严谨学风, 提高综合素质. 在课程安排上, 通过做一系列实验, 使学生对科学实验过程有一个初步了解. 同时在实验方法、测量技术、数据采集和处理等方面接受基本训练.,2. 实验程序,主要分为实验预习, 实验操作, 实验分析, 写实验报告等过程.,二. 误差与数据处理,物理实验离不开对物理量的测量, 测量总存在有误差, 误差是测量中的不可靠量值, 测量结果中存在的不可靠量值现在称为不确定度.,1. 测量,1). 测量的定义: 测量就是将待测量与标准量进行比较, 确定被测量的量值的过程.,2). 测量的类型,(1) 按测量方式划分: 直接测量, 间接测量,a.直接测量: 用测量仪器能直接测出被测量量值的测量过程,相应的被测量称为直接测量量.,单次测量: 只测一次的直接测量. 单次测量主要用于测量精度要求不高, 再次测量比较困难的直接测量中.,多次测量: 测量次数超过一次的直接测量. 可分为等精度测量和非等精度测量.,a.间接测量: 对于某些待测的物理量, 由于没有合适的测量仪器, 不便或不能进行直接测量, 因而只能先测出与待测量有一定函数关系的直接测量量, 再将直接测量的结果代入函数关系式进行计算, 得到待测的物理量, 这个测量过程称为间接测量, 相应的被测量称为间接测量量.,2. 误差,1.) 误差的定义,在实际测量中, 常用的测量主要是单次测量, 等精度测量和间接测量. 当测量精度要求不高时用单次测量, 当测量精度要求比较高时用多次测量, 在无法进行直接测量时才用间接测量.,误差定义为测量值和真值之差, 分为绝对误差和相对误差.,(1) 绝对误差:,绝对误差反映了测量的准确度, 但由于误差存在于 一切测量过程中, 真值虽然客观存在, 却无法得到, 因此, 在等精度测量中,常用测量值和平均值之差估算绝对误差.,(2) 相对误差:,相对误差用绝对误差和真值之比的绝对值表示, 也称百分误差.,2.) 误差的类型及处理方法,在估算绝对误差时, 有时用被测量的公认值、理论值或更高精度的测量值来代替真值 x0, 这些值称为 约定真值.,测量中的误差按产生的原因可分为: 系统误差、随机误差和粗大误差三类.,(1)系统误差: 对同一物理量进行多次等精度测量时, 误差为常量,或以一定规律变化的称为系统误差, 系统误差分为可定系统误差和未定系统误差.,可定系统误差: 在测量中大小和正负可确定的误差, 在测量中应消除掉该项误差.,未定系统误差: 在测量中只能确定大小, 不能确定正负的误差(如由仪器的精度产生的测量误差).,系统误差的产生原因:,a.) 由仪器的不确定度产生的系统误差: 即由仪器本身缺陷、校正不完善或没有按规定条件使用产生的误差.,b.) 由测量原理产生的系统误差: 测量公式本身的近似性或没有满足理论公式所规定的条件所产生的误差.,c.) 由测量环境产生的系统误差: 在测量过程中, 因周围温度、湿度、气压、振动及电磁场等环境条件发生有规律的变化而引起的误差.,d.) 由操作人员产生的系统误差: 如由操作人员的不良习惯或,生理、心理等因素引起的误差.,发现系统误差的方法: 理论分析法, 实验对比法, 数据分析法,(2) 随机误差: 随机误差是指在多次等精度测量中, 误差的绝对值和符号以不可预知的方式变化, 忽大忽小, 忽正忽负, 似乎没有规律性(随机性); 但当测量次数比较多时误差分布就满足另一种规律 统计规律, 最常见的就是正态分布( 高斯分布), 如下图所示,a.) 正态分布的特性,高斯方程中 称为标准差, 是随机误差 x , 即 (x-) 分布函数f(x)的特征量, 表示 x 出现概率最大时的值, 即被测量 x 的平均值.,从高斯分布的表达式可见, 确定, f(x) 就唯一地确定了; 反之, f(x) 确定, 的大小也就唯一地确定了. 越小, 测量精度越高, 分布曲线越陡, 峰值越高, 随机误差越集中; 越大, 则反之.,高斯分布曲线与 x 轴之间所包围的面积等于1, 表示测量值 x落在 - - + 之间的概率为 100%, 设随机误差落在区间 - , + 之内的概率为 P, 则,而测量值落在 -2,+2 区间的概率为95.4%; 落在 -3,+3区间的概率为99.7%.,正态分布的四个重要特性:,单峰性, 对称性, 有界性, 抵偿性,b.) 测量列的标准差, 计算多次测量值的算术平均值作为被测量的最佳近似值., 按Bessle公式计算测量值的标准偏差S(x) .,3.) 关于定性评价测量的三个名词,(1). 准确度: 表示测量值偏离真值的程度, 反映系统误差对测量结果的影响.,(2). 精密度: 表示测量值的分散程度, 反映随机误差对测量结果的影响.,(3). 精确度: 表示测量值重复性的好坏以及和真值的偏离程度, 反映系统误差和随机误差对测量结果的影响.,3. 不确定度,1.) 不确定度的定义,不确定度是由于误差的存在而造成的对被测量值不能确定的程度. 若被测量用 X 表示, 则不确定度用 X 表示, 它是由用统计方法估算的 A 类分量 XA 和用非统计方法估算的 B 类分量 XB 两部分组成.,相对不确定度:,直接测量结果的表示:,2.) 不确定度的两个分量,A 类分量: XA 是对随机误差的统计处理, 常用平均值的一倍标准差估算;,B类分量: XB 是对未定系统误差基本按均匀分布进行的非统计处理, 并换算成与一倍标准差有相同置信概率的分量.,XA 、 XB 应具有同等的置信概率. (在物理实验中, 一般 P = 0.683),3.) 仪器的不确定度 Xyi,仪器的不可靠量值就是它的不确定度 Xyi (以前称仪器误差).它在测量中产生未定系统误差, 该误差大多服从均匀分布. 将仪器不确定度 Xyi 合成到测量结果的不确定度中为 B类分量:,仪器不确定度的获得:, 由仪器的铭牌或说明书给出., 由仪器的准确度等级 K 获得,K: 0.1, 0.2, 0.5, 1.0, 1.5, 2.5, 5.0 七个等级, 估计:,连续读数的仪器取 Xyi = 1/2 分度值;,非连续读数的仪器取 Xyi = 分度值;,数字式仪表Xyi 取末位 1 或 2.,分度值就是仪器最小测量单位的量值.,4. 测量结果和不确定度的确定,1.) 单次直接测量,在某些精度要求不高或条件不许可的情况下, 只需进行单次测量, 则,不确定度,2.) 多次直接测量,通常测量都要重复进行多次, 以便于提高测量精度. 一般测量次数 n 6, 以便于满足 S , 简化XA 的计算.,测量结果,不确定度,3.) 间接测量,间接测量值是把直接测量的结果代入函数关系式(测量公式)经计算而得到的. 由于直接测量有误差, 导致间接测量也有误差. 间接测量的不确定度取决于直接测量结果的不确定度和测量公式的具体形式.,设被测量的函数关系式:,X1, X2, ., Xn 为各自独立的直接测量量.,则间接测量量:,间接测量的不确定度: 对被测量的函数关系式进行全微分, 求出间接测量量的不确定度.,两种特例:,(1). 当测量公式为和差形式时, 直接微分求不确定度 Y.,例1. 求 Y = 3C-D 的不确定度.,解: 对 Y 求微分,用不确定度符号代替微分符号,其中 C、 D 根据直接测量的不确定度计算.,(2). 当测量公式为乘除、指数函数形式时, 先取对数, 再微分求相对不确定度 Y/Y.,例2. 求 Y = 3C / D5 的不确定度.,解: 取对数,微分,相对不确定度,其中 C、 D 根据直接测量的不确定度计算.,4.) 间接测量结果的表示:,例3. 用一级千分尺 (Xyi = 0.004mm) 对一钢丝直径进行六次测量, 结果如下表.千分尺的零位读数为 - 0.008mm, 要求进行数据处理并写出测量结果.,解: 数据处理如下表所示,消除可定系统误差后的平均值:,不确定度的 A 类分量,测量列的标准差:,经检查, 测量列中无坏值.,不确定度的A 类分量:,不确定度的 B 类分量:,仪器不确定度 Xyi = 0.004mm,钢丝直径的不确定度:,钢丝直径的测量结果:,例4. 单摆法测重力加速度的公式为 g = 42L / T2, 各直接测量量的结果为 T = (1.984 0.002) s, L = (9.78 0.01)10 cm, (P = 0.683). 试写出重力加速度的测量结果.,解: 重力加速度,相对不确定度,不确定度,测量结果,5. 有效数字,1.) 有效数字的定义,测量值中的可靠数加上最后一位存疑数的全部称为有效数字,这些数字的总位数称为该测量值的有效位数.,例如 23.4 mm 是3位有效数字, 23.40 mm 是4位有效数字.,2.) 有效数字书写时应注意的问题,有效数字位数的多少直接反映了测量结果的准确度. 有效数字位数越多, 测量的准确度就越高., 单位换算时, 有效数字的位数既不能增加也不能减少.,例如 g = 980 cm/s2 = 9.80 m/s2, 但不等于 9.8 m/s2, 因为两者的有效数字不同.,同样, 当一个通常记数法的数字改写为科学记数法的数字时, 有效数字的位数也不能改变.,例如 g = 980 cm/s2 = 9.80102 cm/s2, 但不等于 9.8102 m/s2., 表示测量结果的有效数字, 其尾数应与不确定度的尾数对齐, 不确定度一般取一位至二位,下一位逢数进位(其首位数 3, 一般取一位;首位数 3, 可保留二位).,例如, E = (1.2 0.6) 1011 N/m2, m = (149.10 0.15) g, = (1.293 0.001) kg/m3., 计算测量值的三角函数、无理数等特殊函数的有效数字时, 测量值可增加 1 个单位, 然后计算函数的结果, 将数值进行比较, 取到数字变化的第一位.,例如, 计算 的有效数字.,因为,因此,4位有效数字,等无理数的有效数字应视算式中其它测量值的有效位数而定, 其精度应与其它测量值同一级或高一级.,3.) 有效数字的运算法则,(1). 加减法: 诸有效数相加减时, 结果的存疑数字的位置应与诸加数中存疑数字最大的位置一致.,例如,(2). 乘除法: 诸有效数相乘除时,结果的有效数字应与诸因子中有效数位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论