2013年高考数学二轮复习第一阶段专题五第三节圆锥曲线的综合问题课件理.ppt_第1页
2013年高考数学二轮复习第一阶段专题五第三节圆锥曲线的综合问题课件理.ppt_第2页
2013年高考数学二轮复习第一阶段专题五第三节圆锥曲线的综合问题课件理.ppt_第3页
2013年高考数学二轮复习第一阶段专题五第三节圆锥曲线的综合问题课件理.ppt_第4页
2013年高考数学二轮复习第一阶段专题五第三节圆锥曲线的综合问题课件理.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一阶段,专题五,知识载体,能力形成,创新意识,配套课时作业,考点一,考点二,考点三,第三节,明确求曲线方程的三种方法 1定义法 如果能够根据所给条件,确定出轨迹是哪种类型的曲线,那么只需求出参数的值,便得到轨迹方程,这种方法称为定义法 2直接法 如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,直接表述成含x,y的等式,就得到轨迹方程,这种方法称为直接法,3代入法 如果轨迹中的点P(x,y)依赖于另一动点Q(a,b),而Q(a,b)又在某已知曲线上,则可先列出关于x,y,a,b的方程组,利用x,y表示出a,b,把a,b代入已知曲线方程便得点P的轨迹方程,这种方法称为代入法(也称相关点法),考情分析 曲线与方程是解析几何中的基本问题之一,高考对曲线与方程的要求不是很高,但高考中经常会有一些试题是以建立曲线方程作为命题点的从近几年高考试题看,试题还是存在一定难度的,因此考生在复习时不应忽视,类题通法 (1)求轨迹方程时,先看轨迹的形状能否预知,若能预先知道轨迹为圆锥曲线,则可考虑用定义法或待定系数法求解 (2)讨论轨迹方程的解与轨迹上的点是否对应,即应注意字母的取值范围,C,考情分析 此考点多以解答题的形式考查,一般试题难度较大,多考查点或参数是否存在,常与距离、斜率或方程等问题综合考查,形成知识的交汇问题。,类题通法 存在性问题主要体现在以下几方面: (1)点是否存在; (2)曲线是否存在; (3)命题是否成立 解决这类问题的一般思路是先假设存在满足题意的元素,经过推理论证,如果可以得到成立的结果,就可以作出存在的结论;若得到与已知条件、定义、公理、定理、性质相矛盾的结论,则说明假设不成立,考情分析 此类问题以直线、圆锥曲线为载体,结合其他条件探究直线和曲线过定点,计算一些数量积或代数式的值为定值,试题以解答题为主,突出考查学生的运算能力,该类题型是近几年高考的热点,例3 (2012上海高考)在平面直角坐标系xOy中,已知双曲线C1:2x2y21. (1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积; (2)设斜率为1的直线l交C1于P、Q两点若l与圆x2y21相切,求证:OPOQ; (3)设椭圆C2:4x2y21.若M、N分别是C1、C2上的动点,且OMON,求证:O到直线MN的距离是定值,类题通法 1定值问题的求解策略 在解析几何中,有些几何量与参数无关,这就是“定值”问题,解决这类问题常通过取特殊值,先确定“定值”是多少,再进行证明,或者将问题转化为代数式,再证明该式是与变量无关的常数或者由该等式与变量无关,令其系数等于零即可得到定值,2定点问题的求解策略 把直线或曲线方程中的变量x,y当作常数看待,把方程一端化为零,既然直线或曲线过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部等于零,这样就得到一个关于x,y的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点,破解圆锥曲线中的最值与范围问题 圆锥曲线的最值与范围问题是历年高考的热点,又是试题的难点求解范围与最值问题的关键是构造目标函数或构造与所求问题相关的不等式,利用函数的性质或解不等式求解相应的最值与范围,常用的方法有:转化法、参数法、函数法和基本不等式法等在处理过程中要注意题中的一些隐含条件,如直线和曲线相交于不同的两点,需要转化为二次方程的判别式大于零,名师支招 利用设参数建立目标函数求解最值与范围时,应注意两方面的问题:一是参数取值范围的限制,如该题中把直线的斜率作为参数时,要考虑斜率不存在的情况,也可根据直线l和圆相切,从而确定m的取值范围,并根据其取值的不同情况进行分类讨论;二是求解目标函数的最值或范围时,应该根据解析式的特征通过灵活变形采用相应的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论