椭圆的简单几何性质优质.ppt_第1页
椭圆的简单几何性质优质.ppt_第2页
椭圆的简单几何性质优质.ppt_第3页
椭圆的简单几何性质优质.ppt_第4页
椭圆的简单几何性质优质.ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.1.2椭圆的简单几何性质(2),高二数学 选修1-1 第二章 圆锥曲线与方程,所以,点M的轨迹是长轴、短轴长分别为10、6的椭圆。,思考上面探究问题,并回答下列问题:,探究:,(1)用坐标法如何求出其轨迹方程,并说出轨迹,(2)给椭圆下一个新的定义,探究、点M(x,y)与定点F (c,0)的距离和它到定直线l:x=a2/c 的距离的比是常数c/a(ac0),求点M 的轨迹。,y,F,F,l,I,x,o,P=M| ,由此得,将上式两边平方,并化简,得,设 a2-c2=b2,就可化成,这是椭圆的标准方程,所以点M的轨迹是长轴、短轴分别为2a,2b 的椭圆,M,解:设 d是M到直线l 的距离,根据题意,所求轨迹就是集合,y,由探究可知,当点M与一个定点的距离和它到一条定直 线的距离 的比是常数 时,这个点的轨 迹 就是椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线,常数e是椭圆的离心率。 此为椭圆的第二定义.,对于椭圆 ,相应于焦点F(c,0) 准线方程是 , 根据椭圆的对称性,相应于 焦点F(-c.0) 准线方程是 , 所以椭圆有两条准线。,归纳:,椭圆的第一定义与第二定义是相呼应的。,由椭圆的第二定义可得到椭圆的几何性质如下:,课堂练习,1、椭圆 上一点到准线 与到焦点(-2,0)的距离的比是 ( ),B,2、椭圆的两焦点把两准线间的距离三等分,则这个椭圆的离心率是( ),C,3.已知点M到定点F的距离与M到定直线l的距离的比为0.8,则动点M的轨迹是( ) A.圆 B.椭圆 C.直线 D.无法确定,B,回忆:直线与圆的位置关系,1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与圆的方程 消元得到二元一次方程组 (1)0直线与圆相交有两个公共点; (2)=0 直线与圆相切有且只有一个公共点; (3)0 直线与圆相离无公共点,通法,直线与椭圆的位置关系,种类:,相离(没有交点),相切(一个交点),相交(二个交点),相离(没有交点) 相切(一个交点) 相交(二个交点),直线与椭圆的位置关系的判定,代数方法,1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与椭圆的方程 消元得到二元一次方程组 (1)0直线与椭圆相交有两个公共点; (2)=0 直线与椭圆相切有且只有一个公共点; (3)0 直线与椭圆相离无公共点,通法,知识点1.直线与椭圆的位置关系,例1:直线y=kx+1与椭圆 恒有公共点, 求m的取值范围。,题型一:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,练习2.无论k为何值,直线y=kx+2和曲线 交点情况满足( ) A.没有公共点 B.一个公共点 C.两个公共点 D.有公共点,D,题型一:直线与椭圆的位置关系,练习:当m取何值时直线y=x+m与椭圆 相交,相切,相离?,解:将y=x+m代入 整理得5x2+2mx+m2-16=0,题型二:直线与椭圆的位置关系,题型一:直线与椭圆的位置关系,思考:最大的距离是多少?,题型一:直线与椭圆的位置关系,练习3已知直线y=x- 与椭圆x2+4y2=2 ,判断它们的位置关系。,解:联立方程组,消去y,0,因为,所以,方程()有两个根,,那么,相交所得的弦的弦长是多少?,则原方程组有两组解.,- (1),由韦达定理,弦长公式:,|AB| =,通法,设,A(x1,y1),B(x2,y2),直线 的方程:,因,A(x1,y1),,B(x2,y2),在直线 上,设而不求,二、弦长问题,例3:已知斜率为1的直线L过椭圆 的右焦点,交椭圆于A,B两点,求弦AB之长,题型二:弦长公式,解:联立方程组,消去y,0,因为,所以,方程()有两个根,,则原方程组有两组解.,- (1),2.过椭圆 的右焦点与x轴垂直的直线与椭圆 交于A,B两点,求弦长|AB|,题型二:弦长公式,例5、如图,已知椭圆 与直线x+y-1=0交 于A、B两点, AB的中点M与椭圆中心连线的 斜率是 ,试求a、b的值。,例6 :已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.,解:,韦达定理斜率,韦达定理法:利用韦达定理及中点坐标公式来构造,题型三:中点弦问题,例 6 已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.,点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率,点,作差,题型三:中点弦问题,直线和椭圆相交有关弦的中点问题,常用设而不求的 思想方法,例6已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.,所以 x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0 从而A ,B在直线x+2y-4=0上 而过A,B两点的直线有且只有一条,解后反思:中点弦问题求解关键在于充分利用“中点”这一 条件,灵活运用中点坐标公式及韦达定理,,题型三:中点弦问题,(2)直线 过椭圆的右焦点,交椭圆于A、B两点,求弦AB的长。,3、弦中点问题的两种处理方法: (1)联立方程组,消去一个未知数,利用韦达定理; (2)设两端点坐标,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论