




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章: 正态随机过程,多维正态随机变量的定义与协方差矩阵 多维正态随机变量的性质 正态随机过程的定义 正态随机过程的性质,定义: 如果对一个随机过程任意选取n个时刻,则得到n个相应的随机变量, 若此n个随机变量的联合分布都是n维正态分布,则称随机过程X(t)是正态随机过程(高斯过程)。,随机变量的特征函数 随机变量的概率密度函数和特征函数之间存在一一对应关系,因此在得知随机变量的特征函数后,就可以知道它的概率密度函数。,一、特征函数的定义 设 为随机变量,称 的数学期望为随机变量 的特征函数。记为,已知特征函数,求概率密度函数。,例题: 解:,例题:,P8例题1.2,二、性质 1) 2)X的特征函数为 ,则Y=aX+b的特征函数为:,证明:,例题: 构造 其中,解:,3)矩定理,证明:,当n=1时,证明:,三、多维随机变量的特征函数 1)定义,即:,若,2)性质 1、若X1,X2 统计独立,则: 推广到n个 解:,若独立,则,2、边际特征函数 推广到n个 解:,3、已知,证明:,比较:,一维正态随机变量的概念: 一维正态随机变量X的概率密度函数可以表示为,记为 特征函数为:,二维正态随机变量的概念: 若随机变量X1,X2的联合概率密度函数可以表示为,则称X1,X2为二维正态随机变量。其中为X1和X2的相关系数。对于上述二维随机变量,其边际概率密度函数可表示为,因此其边际分布为一维正态分布 ,,二维正态分布的协方差矩阵可表示为,二维正态分布的协方差矩阵具有如下性质: 实对称矩阵; 正定矩阵 其逆矩阵可表示为,二维正态随机变量的联合密度也可表示为,其中,n维正态随机变量的定义: 若n维随机变量的联合密度函数为,则称 为n维正态随机变量,其中C为n维实对称正定阵。记为,n维随机变量的性质,若 ,则存在n阶正交矩阵A,使得向量 中的分量Y1,Y2, ,Yn是独立的随机变量,且Yi为一维正态分布N(0,di)。,说明,2、 的特征函数为,证明,总存在正交矩阵A,通过变换 此时随机向量的协方差矩阵,且,由性质1可以知道: 为n维独立随机变量,,且,其中,则,由特征函数线性变换的性质,对于,可以得到:,3、n元正态分布中任意m维子向量亦为正态分布(mn),证明,已知:,若令,则:,4、n元正态随机变量的线性变换也为正态随机变量。 即若 为正态随机向量,则 亦为正态随机向量。,只需证明其特征函数亦为正态特征函数,即,已知,若,即,证明:,5、若 为n维正态随机变量,那么X1,X2, ,Xn相互独立的充要条件是两两互不相关。,证明,(1) 若已知两两相互独立,则不相关. (2)若已经知道两两不相关,即Cij=0(当i不等于j时),则,实际上,若:,方法二:,正态随机过程定义: 若随机过程X(t)的任意n维分布都是n维正态分布,则称X(t)是正态随机过程(高斯过程)。,正态随机过程的性质: 若正态随机过程为宽平稳,则必为严平稳。 二阶矩过程,宽平稳特点,X(t)的期望为常数,与时间原点无关,X(t)的相关函数只是时间差t的函数,若正态过程为宽平稳过程,则mX(t)=a为常数,RX(tk,ti)= RX(tk-ti). 任取n个抽样时刻t1,t2,tn,这n个时刻所对应的随机变量的协方差矩阵为B,其任意一元素 bki=RX(tk-ti)-a2=b(tk-ti),则该n个正态变量对应的特征函数为:,证明:,若把n个时间抽样点作一个时间平移h,即取抽样时刻为t1+h,t2+h,tn+h,则平移后的对应的n个正态分布的随机变量的特征函数为:,高斯过程通过线性系统,其输出亦为正态随机过程。 若系统输入端的随机过程为非高斯过程,只要输入随机过程的等效带宽远大于系统的通频带,系统输出端得到正态随机过程。 平稳正态随机过程与确定信号之和的概率分布认为正态随机过程。,证明,例题1: 设平稳正态过程X(t)均值为0,相关函数RX()=(e-2|)/4,求对给定时刻t,X(t1)的值在0.5和1之间的概率。 解:,例题2: X(t)=Acosw0t+Bsinw0t,其中A与B为两个独立的正态随机变量,且EA=EB=0,EA2=EB2=2,w0为常数,求X(t)的一维,二维密度函数。 解:,X(t)为正态随机过程,,所以:,或者,或者,所以,作业,X(t)Xcos2t+Ysin2t,式中X和Y是独立的随机变量,且均值为0,方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国金纳米粒子在电子信息行业的市场潜力研究报告
- 2025年光伏建筑一体化项目在会展中心建筑中的绿色能源应用报告
- 2025年中国工业丙烯酸粘合剂行业市场分析及投资价值评估前景预测报告
- 电商行业知识产权保护与知识产权保护政策实施效果分析与优化研究报告
- 2025年养老机构医养结合模式下的养老机构服务创新与市场拓展报告
- 2025年智能家居市场用户满意度与品牌忠诚度研究报告
- 2025年中国高导热环氧塑封料行业市场分析及投资价值评估前景预测报告
- 2025年中国高纯双酚F环氧树脂行业市场分析及投资价值评估前景预测报告
- 6.2.1 直线、射线、线段 教学设计 - 人教版数学七年级上册
- 2025年中国高纯度氧化镁行业市场分析及投资价值评估前景预测报告
- 2025年四川省情省况考试复习题库题库(含答案)
- 科学教育:未来启航
- GB/T 46134-2025天然酯在电气设备中的维护和使用导则
- 金太阳九年级数学月考试卷及答案
- TNAHIEM 96-2023 静脉用药调配中心建设与配置标准
- 数字化教学资源开发与应用
- 高一生物考试背诵内容
- 新消费者权益保护法
- 实验 曝气系统中氧的转移
- 基础医学概论
- 原平市屯瓦昌兴选矿厂铁矿资源开发利用、地质环境保护与土地复垦方案
评论
0/150
提交评论