已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Heat Transfer 传热学,Building Energy Efficiency is the Wave of the Future !,3 非稳态导热,建筑环境与设备工程专业主干课程之一 !,Chapter3 Unsteady-State (Transient) Conduction,Heat Transfer,、重点内容: 非稳态导热的基本概念及特点; 集总参数法的基本原理及应用; 一维及二维非稳态导热问题。 2 、掌握内容: 确定瞬时温度场的方法; 确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。,Heat Transfer,一、无限大平板加热(冷却)过程分析,厚度 2 的无限大平壁,、a为已知常数;=0时温度为 t0; 突然把两侧介质温度降低为 t并保持不变;壁表面与介质之间的表面传热系数为h。 两侧冷却情况相同、温度分布对称。中心为原点。,3-2 一维非稳态导热过程分析及周期性非稳态导热,Heat Transfer,导热微分方程:,初始条件:,边界条件: (第三类),Heat Transfer,Heat Transfer,采用分离变量法求解:,只能为常数:,只为 的函数,只为 x 的函数,Heat Transfer,对 积分,得到,式中C1是积分常数,常数值的正负可以从物理概念上加以确定。,当时间趋于无穷大时,过程达到稳态,物体达到周围环境温度,所以必须为负值,否则物体温度将无穷增大。,Heat Transfer,令,则有 以及,以上两式的通解为:,于是:,Heat Transfer,常数A、B和可由边界条件确定。,(1) (2) (3),由边界条件(2)得B=0,(a),(a)式成为 (b),边界条件(3)代入(b) 得 (c),Heat Transfer,将 右端整理成:,注意,这里Bi数的尺度为平板厚度的一半。,显然,设=,是两曲线交点对应的所有值。式(c)称为特征方程。 称为特征值。分别为1、 2 n。,Heat Transfer,至此,我们获得了无穷个特解:,.,将无穷个解叠加:,Heat Transfer,利用初始条件 求An,解的最后形式为:,Heat Transfer,傅里叶准则,Fo:称之为傅里叶准则或傅里叶数,其物理意义表征了给定导热系统的导热性能与其贮热(贮存热能)性能的对比关系,是给定系统的动态特征量 .,Heat Transfer, 无量纲距离,Heat Transfer,非稳态导热的正规状况,对无限大平板 当 取级数的首项,板中心温度, 误差小于1%,Heat Transfer,与时间无关,Heat Transfer,考察热量的传递,Q0 -非稳态导热所能传递的最大热量,Heat Transfer,正规热状况的实用计算方法线算图法,诺谟图,三个变量,因此,需要分开来画,以无限大平板为例,F00.2 时,取其级数首项即可,先画,Heat Transfer,(2) 再根据公式(3-23) 绘制其线算图,(3) 于是,平板中任一点的温度为,同理,非稳态换热过程所交换的热量也可以利用(324)和(325)绘制出。,Heat Transfer,Heat Transfer,如何利用线算图,a)对于由时间求温度的步骤为,计算Bi数、Fo数和x/ ,从图3-5中查找m/ 0 和从图3-6中查找 / m ,计算出 ,最后求出温度t,b) 对于由温度求时间步骤为,计算Bi数、 x/和 / 0 ,从图3-6中查找 / m, ,计算m/ 0然后从图3-5中查找Fo,再求出时间 。,c)平板吸收(或放出)的热量,可在计算0和Bi数、Fo数之后,从图3-7中/0查找,再计算出,Heat Transfer,解的应用范围,书中的诺谟图及拟合函数仅适用恒温介质的第三类边界条件或第一类边界条件的加热及冷却过程,并且F0=0.2,Heat Transfer,二、无限长圆柱体和球体加热(冷却)过程分析,1.无限长圆柱,式中R为无限长圆柱体的半径,类似有 : 和,Heat Transfer,2.球体,球体处理方法与无限大圆柱体完全相同,相应的线算图见教材。 这里要注意的是特征尺寸R为球体的半径,r为球体的径向方向。,Heat Transfer,Fo0.2时,进入正规状况阶段,平壁内所有各点过余温度的对数都随时间按线性规律变化,变化曲线的斜率都相等。,Fo0.2时是瞬态温度变化的初始阶段,各点温度变化速率不同,Heat Transfer,2. Bi准则对温度分布的影响,Bi (Bi=h / )表征了给定导热系统内的导热热阻与其和环境之间的换热热阻的对比关系 。,当 Bi 时,意味着表面传热系数 h ,对流换热热阻趋于0。平壁的表面温度几乎从冷却过程一开始,就立刻降到流体温度 t 。,Heat Transfer,当Bi0时,意味着物体的热导率很大、导热热阻 0(Bi= h / )。物体内的温度分布趋于均匀一致。 可用集总参数法求解.,Heat Transfer,三、多维非稳态导热的图解法,应用上面讨论线算图可以求出厚度为2的大平板、半径为R的无限长圆柱体、及半径为R的球体的温度分布和传导的热量。,对非一维非稳态导热问题,我们能不能利用上面的一维非稳态导热线算图来进行求解呢?,用一个无限长矩形柱为例来回答这一问题。,Heat Transfer,二维及三维问题的求解,考察一无限长方柱体(其截面为 的长方形),Heat Transfer,一个二维非稳态导热问题的解可以用两个导热方向相互垂直的一维非稳态导热问题解的乘积来表示。,同理,一个三维非稳态导热问题的解可以用三个相互垂直的一维非稳态导热问题解的乘积来表示。,例如:1.矩形截面的长棱柱(正四棱柱):可由两个大平板正交构成,因而温度分布为两个大平板对应的温度分布的乘积,Heat Transfer,2.矩形块体(立方体) 可由三个大平板正交构成,因而温度分布为三个大平板对应的温度分布的乘积,3.短圆柱体可由一个长圆柱体和一个大平板正交构成,因而温度分布为一个长圆柱体和一个大平板对应的温度分布的乘积,Heat Transfer,Heat Transfer,4.半长圆柱体可由一个长圆柱体和一个半无限大固体正交构成,因而温度分布为一个长圆柱体和一个半无限大固体对应的温度分布的乘积,需要强调的是,我们要确定某一点的温度时,一定要首先确定该点在对应的几个一维空间上的位置,再去确定相应的一维温度值,最终乘积得出物体在该点的温度值。,Heat Transfer,四、半无限大的物体,半无限大系统指的是一个半无限大的空间,也就是一个从其表面可以向其深度方向无限延展的物体系统。 很多实际的物体在加热或冷却过程的初期都可以视为是一个半无限大固体的非稳态导热过程。,Heat Transfer,Heat Transfer,五、周期性非稳态导热,1、周期性非稳态导热现象,Heat Transfer,五、周期性非稳态导热,1、周期性非稳态导热现象,Heat Transfer,五、周期性非稳态导热,2、半无限大物体周期性变化边界条件下的温度波,Heat Transfer,五、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学《金融学-商业银行经营管理》考试模拟试题及答案解析
- 2025行政专员秋招面试题及答案
- 复星医药面试题及答案
- 2025年大学《艺术史论-艺术考古与文物鉴定》考试参考题库及答案解析
- 浙美版四年级上册10 花鸟小品教学设计
- 2025高考政治一轮总复习考点精析教案选择性必修3第3单元运用辩证思维方法第9课理解质量互变考点1认识质量互变规律
- 大模型开发招聘真题及答案
- 渤海银行秋招真题及答案
- 比亚迪面试题及答案
- 2025年大学《劳动关系-劳动争议处理》考试备考试题及答案解析
- 桥架安装承包合同范本
- 公司3s管理制度
- 二次元谷子店创业计划
- 北京市禁止使用建筑材料目录(2023年版)
- 儿童发展问题的咨询与辅导-案例1-5-国开-参考资料
- 晕血晕针处理流程
- TCACM 1621-2024 中医药卫生技术评估实施规范
- 事理论国防安全
- 2024-2025学年新教材高中语文第三单元11.1过秦论课时作业含解析新人教版选择性必修中册
- 2025年四川省德阳市事业单位招聘笔试高频重点提升(共500题)附带答案详解
- 植保无人机飞行作业服务应急及突发事件处理方案
评论
0/150
提交评论