已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学与生活,逻 辑,两个人从烟囱爬出来,一个人满脸烟灰,一个人干干净净,他们相视一会儿以后,你猜哪个人去洗澡了?为什么?,烟囱,笨人执竿要进屋, 无奈门框挡住竹, 横多四尺竖多二, 没法急得放声哭。 有个邻居聪明者, 教他斜竿对两角。 笨人依言试一试, 不多不少刚抵足, 谁人算出我佩服。,生活中的趣味数学之执竿进屋,勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”) 边长平方和等于斜边(即“弦”)边长的平方。 也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c 。 勾股定理现发现约有400种证明方法, 是数学定理中证明方法最多的定理之一。 勾股数组成a+b=c的正整数组(a,b,c)。(3,4,5)就是勾股数。,勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a+b=c这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a+b=c。”常见勾股数有(3,4,5)(5,12,13) (6,8,10)。,远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。古埃及人在建筑宏伟的金字塔和尼罗河泛滥后测量土地时,也应用过勾股定理。在中国,商朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。 在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。,如图(左)为小张家楼梯,测得楼梯长为5米,高3米,计划在楼梯表面铺地毯如图(右),则地毯至少多长?,169,25,B,?,如图,已知大正方形的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TCUWA 10106-2024 城镇水务信息在线采集技术标准
- TCECS 1326-2023 全流动触探试验标准
- 恒邦招聘试题及答案
- 海澜之家招聘试题及答案
- 餐饮行业市场分析及投资策略
- 公务员面试农业稳产保供面试题及答案
- 机器学习工程师招聘题库及答案
- 互联网技术运营经理秋招面试题及答案
- 公务员面试李丰面试题及答案
- 国家铁路集团校招面试题及答案
- 2025中级消防设施操作员作业考试题及答案(1000题)
- Gexcon 气体爆炸手册
- 病房突发事件的应急与处理
- 《PCB材料介绍》课件
- 《工贸行业重大事故隐患判定标准》专题培训
- 合伙人合同协议书范文小规模个体户
- 【九牧卫浴公司考评制度问题及完善对策(6000字论文)】
- 科研伦理与学术规范课后习题
- 危险废物库房建设项目竣工环保验收监测调查报告
- (高立牌)SC型施工升降机说明书
- 中医基础理论-初级课件
评论
0/150
提交评论