




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,平面直角坐标系中求面积,几种常见面积问题的求法,一、自主学习 1、(1)已知点P在x轴上,且到y轴的距离为2, 则 点P的坐标为_ (2)已知点P到x轴的距离为3,到y轴的距离为4,则点P的坐标为_ (3)若A(-1,0),B(4,0),则线段AB的长为_ (4)若A(0,5),B(0,3),则线段AB的长为_ (5)若A(-3,-2),B(-5,-2),则线段AB的长为_ (6)若A(3,2),B(3,-3),则线段AB的长为_,(-2,0)(2,0),(4,3)(-4,3)(4,-3)(-4,-3),5,2,2,5,题型一,底边在坐标轴上三角形面积的求法,3,4,如图(1), AOB的面积是多少?,问题1,y,O,x,图(1),A,B,4 3 2 1,1 2 3 4,(4,0),(0,3),5,这个 AOB的面积是多少,你会求吗?,y,O,x,图(2),A,B,4 3 2 1,1 2 3 4,(3,3),(4,0),2、如图所示,A(-4,-5),B(-2,0),C(4,0), 求ABC的面积。,A,B,C,D,解:过点A作ADX轴于点D A(-4,-5) D(-4,0) 由点的坐标可得 AD=5 BC=6 SABC = BCAD= 65=15,8,y,A,B,C,练习. 已知A(1,4), B(-4,0),C(2,0). ABC的面积是 .若BC的坐标不变, ABC的面积为6,点A 的横坐标为-1,那么 点A的坐标为_ _.,12,O,(1,4),(-4,0),(2,0),(-1,2)或(-1,-2),9,2. 点B在哪条直线上运动时, OAB的面积 保持不变?为什么?,y,O,x,A,B,4 3 2 1,1 2 3 4,(3,3),(4,0),二:有一边与坐标轴平行,10,三角形ABC三个顶点的坐标分别为A(4,1),B(4,5),C(-1,2),求三角形ABC的面积.,题型三,割补法解决面积,11,三、探究展示 如图,四边形ABCO在平面直角坐标系中, 且A(1,4),B(5,2),C(6,0), O(0,0), 求四边形ABCO的面积。,6,C,A,B,(1,4),(6,0),(5,2),D,E,F,解:过点A作ADX轴于点D,过点B作BEX轴于点E 则D(1,0) E(5,0),由点的坐标可知 AD=4 BE=2 OD=1 DE=4 CE=1 S四边形ABCD= SAOD+ S梯形ABED+SBEC = ODAD+ (BE+AD)DE+ ECBE = 14+ 62+ 12 = 15,三:探究展示 如图,四边形ABCO在平面直角坐标系中, 且A(1,4),B(5,2),C(6,0), O(0,0), 求四边形ABCO的面积。,6,C,A,B,(1,4),(6,0),(5,2),D,E,F,15,做一做,已知ABC中,A(-1,-2),B(6,2),C(1,3), 求ABC的面积.,y,-3,16,17,方法2,18,A(-1,-2),B(6,2),C(1,3),E(6,3),F(-1,3),方法3,19,练习.三角形ABC三个顶点A、B、C的坐标分别为A(2,-1),B(1,-3),C(4,-3.5)。,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,(1)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标;,A,C,B,20,1 2 3 4 5 6,-6,7,6,5,4,2,3,1,-1,-2,-3,-4,-5,-6,-7,-5,-4,-3,-2,-1,y,x,0,(2)求出三角形 A1B1C1的面积。,D,E,分析:可把它补成一个梯形减去 两个三角形。,21,1.等积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业公司销售培训
- 培训机构生源留存策略
- 支气管患儿的护理
- 5S作业现场活动培训
- 梁漱溟教育思想体系
- ICU镇静镇痛的护理管理
- 夫妻不自愿离婚协议书及后续财产分割执行细则
- 成都农村集体土地使用权买卖合同范本
- 餐饮企业战略投资股份协议书
- 跨区域车辆抵押担保协议书
- 军事学:国际战略环境必看考点四
- (高清版)DZT 0212.4-2020 矿产地质勘查规范 盐类 第4部分:深藏卤水盐类
- 粉尘防爆安全操作规程范文
- 《快速原型制造》课件
- 监理抽检表 - 06防护支挡工程
- 微生物学周德庆第四版答案
- 国家中小学智慧教育平台培训专题讲座
- 南邮组织行为学期末复习题
- 物业工程维修作业安全操作指南
- 农村医生个人工作简历表
- 装修常用数据手册(空间布局和尺寸)
评论
0/150
提交评论