挡土墙土压力计算.ppt_第1页
挡土墙土压力计算.ppt_第2页
挡土墙土压力计算.ppt_第3页
挡土墙土压力计算.ppt_第4页
挡土墙土压力计算.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章 挡土墙土压力计算,第一节 概述 第二节 静止土压力计算 第三节 朗肯土压力理论 第四节 库伦土压力理论 第五节 若干问题的讨论,第一节 概述,挡土墙:用来侧向支持土体的结构物,统 称为挡土墙。 土压力:被支持的土体 作用于挡土墙 上的侧向压力。 一、挡土结构物的类型 挡土墙的常见类型: (如图),按常用的结构形式分: 重力式、悬壁式、扶臂式、锚式挡土墙,按刚度及位移方式分: 刚性挡土墙、柔性挡土墙 、临时支撑,二、墙体位移与土压力类型,墙体位移的方向和位移量决定着所产生的土压力性质和土压力大小。,太沙基的模型试验结果,三种土压力的关系: 静止土压力对应于图中A点 墙位移为0,墙后土体 处于弹性平衡状态 主动土压力对应于图中B点 墙向离开填土的方向位 移,墙后土体处于主动 极限平衡状态 被动土压力对应于图中C点 墙向填土的方向位移,墙后土体处于被动极限平衡 状态 PaP0Pp,试验表明: 挡土墙所受到的土压力类型,首先取决于墙体是否发生位移以及位移方向; (2) 挡土墙所受土压力的大小随位移量而变化,并不是一个常数; (3) 主动和被动土压力是特定条件下的土压力,仅当墙有足够大位移或转动时才能产生。,表6-1 产生主动和被动土压力所需墙的位移量,挡土墙在土压力作用下,不向任何方向发生位移和转动时,墙后土体处于弹性平衡状态,作用在墙背上的土压力称为静止土压力。 当挡土墙沿墙趾向离开填土方向转动或平行移动,且位移达到一定量时,墙后土体达到主动极限平衡状态,填土中开始出现滑动面 ,这时在挡土墙上的土压力称为主动土压力。 当挡土墙在外力作用下向墙背填土方向转动或平行移动时,土压力逐渐增大,当位移达到一定量时,潜在滑动面上的剪应力等于土的抗剪强度,墙后土体达到被动极限平衡状态,填土内开始出现滑动面 ,这时作用在挡土墙上的土压力增加至最大,称为被动土压力。,第二节 静止土压力计算,静止土压力强度(p0)可按半空间直线变形体在土的自重作用下无侧向变形时的水平侧向应力h来计算。 下图表示半无限土体中深度为z处土单元的应力状态:,设想用一挡土墙代替单元体左侧的土体,挡土墙墙背光滑,则墙后土体的应力状态并没有变化,仍处于侧限应力状态。 竖向应力为自重应力: z=z 水平向应力为原来土体内部应力变成土对墙的应力,即为静止土压力强度p0: p0=h=K0z,静止土压力沿墙高呈三角形分布,作用于墙背面单位长度上的总静止土压力(P0): P0的作用点位于墙底面往上1/3H处,单位kN/m。 (d)图是处在静止土压力状态下的土单元的应力摩尔圆,可以看出,这种应力状态离破坏包线很远,属于弹性平衡应力状态。,第三节 朗肯土压力理论,一、基本原理 朗肯理论的基本假设: 1.墙本身是刚性的,不考虑墙身的变形; 2.墙后填土延伸到无限远处,填土表面水平(=0); 3.墙背垂直光滑(墙与垂向夹角 =0,墙与土的摩擦角=0)。,1857年英国学者朗肯(Rankine)从研究弹性半空间体内的应力状态,根据土的极限平衡理论,得出计算土压力的方法,又称极限应力法。,表面水平的均质弹性半空间体的极限平衡状态图,土体内每一竖直面都是对称面,地面下深度z处的M点在自重作用下,垂直截面和水平截面上的剪应力均为零,该点处于弹性平衡状态(静止土压力状态),其大小为:,用1、3作摩尔应力圆,如左图所示。其中 3 ( h)既为静止土压力强度。,二、主动土压力的计算 用1,3作摩尔应力圆,如图中应力圆I所示。 使挡土墙向左方移动,则右半部分土体有伸张的趋势,此时竖向应力v不变,墙面的法向应力h减小。v 、h仍为大小主应力。当挡土墙的位移使得h减小到土体已达到极限平衡状态时,则h减小到最低限值pa ,即为所求的朗肯主动土压力强度。,对于粘性土:,三、被动土压力的计算 同计算主动土压力一样用1、3作摩尔应力圆,如下图。 使挡土墙向右方移动,则右半部分土体有压缩的趋势,墙面的法向应力h增大 。h、 v为大小主应力。当挡土墙的位移使得h增大到使土体达到极限平衡状态时,则h达到最高限值pp ,即为所求的朗肯被动土压力强度。,对于粘性土:,四、实际工程中朗肯理论的应用,(一)无限斜坡面的土压力计算,(二)坦墙土压力计算,当墙背倾角45-/2时,滑动土楔不再沿墙背滑动,墙后土体中出现两个滑动面的挡土墙称为坦墙。,cr=45-/2,(四)填土成层和有地下水时的土压力计算,地下水水位以下用浮容重和水下的值,(a),(b),(c),(三)填土表面有均布荷载作用时,第四节 库伦土压力理论,库伦土压力理论是从楔体的静力平衡条件得出的。 基本假设: a.滑动破裂面为通过墙踵的平面(平面滑裂面)。 b.挡土墙是刚性的(刚体滑动)。 c.滑动楔体 处于极限平衡状态(极限平衡)。,(一)无粘性土主动土压力,一、数解法,(二)无粘性土被动土压力,二、图解法,(一)库尔曼图解法,(二)粘性填土的土压力,(三)折线形墙背,第五节 若干问题的讨论,相同点:都属于极限状态土压力理论 不同点:朗肯理论从土体中一点的极限平衡状 态出发,由处于极限平衡状态时的大 小主应力关系求解(极限应力法); 库伦理论根据墙背与滑裂面之间的土 楔处于极限平衡,用静力平衡条件求 解(滑动楔体法) 。,一、分析方法的异同,二、朗肯与库伦理论的适用范围,朗肯理论的适用范围: 1=0,=0,=0; 2 =0, ; 3 0, (45- /2)的坦墙; 4L型钢筋混凝土挡土墙; 5填土为粘性土或无粘性土。,库伦理论的适用范围(较朗肯理论广): 1当 0; 2墙背形状复杂,墙后填土与荷载条件复杂时; 3墙背倾角 (45- /2)的陡墙; 4数解法用于无粘性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论