§1.8函数的连续性与间断点.ppt_第1页
§1.8函数的连续性与间断点.ppt_第2页
§1.8函数的连续性与间断点.ppt_第3页
§1.8函数的连续性与间断点.ppt_第4页
§1.8函数的连续性与间断点.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,1.10 函数的连续性 与间断点,函数的连续(continuity),函数的间断点,小结 思考题 作业,(discontinuous point),第一章 函数与极限,2,1. 函数的增量,自变量,称差,为自变量在,的增量;,函数随着从,称差,为函数的,增量.,如图:,一、函数的连续性,3,连续,2. 连续的定义,定义1,设函数 f (x)在,内有定义,若,则称函数f(x)在x0处,并称x0为函数f(x)的,连续点.,4,例,证,都是连续的.,类似可证,是连续的.,即,5,定义2,若,则称函数f(x)在x0处,连续.,6,例,证,定义2,试证函数,处连续.,7,连续性,f (x)在,处有定义;,(1),(2),(3),三个要素:,存在;,8,3. 左、右连续,左连续(continuity from the,右连续(continuity from the,left);,right).,左连续,右连续,9,定理1,此定理常用于判定分段函数在分段点,处的连续性.,10,例,解,右不连续.,所以,左连续,11,例,解,12,4. 连续函数(continous function)与连续区间,上的,或称函数在该区间上连续.,在区间上每一点都连续的函数,称该区间,在开区间,右连续,左端点,右端点,这时也称该区间为,左连续,连续函数,连续区间.,内连续,13,例如,有理整函数(多项式),内是连续的.,因此有理分式函数在其定义域内的每一点,有理分式函数,只要,都有,因此有理整函数在,都是连续的.,14,定义4,出现如下三种情形之一:,二、函数的间断点及其分类,无定义;,不存在;,间断点.,15,间断点分为两类:,第二类间断点(discontinuity point of the second kind):,第一类间断点(discontinuity point of the first kind):,及,均存在,及,中至少一个不存在.,若,称 为可去间断点.,若,称 为跳跃间断点.,若其中有一个为振荡,若其中有一个为,称 为无穷间断点.,称 为振荡间断点.,16,例,由于函数,无定义,故,为f(x)的 间断点.,且,皆不存在.,第二类,第二类间断点:,至少有,且是无穷型间断点.,一个不存在.,17,例,有定义,不存在,故,为f (x)的 间断点.,第二类,且是无穷次振荡型间断点.,之间来回无穷次振荡,18,例,有定义,故,为f (x)的 间断点.,第一类,的第一类间断点.,则点x0为函数 f(x) 的,且是跳跃间断点.,跳跃型间断点(Jump,discontinuity).,及,均存在,则点x0为,19,例,讨论函数,解,为函数的 间断点.,第一类,且是可去间断点(removable discontinuity).,连续.,处无定义,可去间断点.,20,则可使x0变为连续点.,对可去间断点x0,如果,于A,(这就是为什么将这种间断点称为,使之等,可去间断点的理由.),补充 x0的函数值,或改变,21,如补充定义:,如,但,22,可去型,第一类间断点,跳跃型,无穷型,无穷次振荡型,第二类间断点,23,总结两类间断点:,第一类间断点:,跳跃型,第二类间断点:,无穷型,可去型,无穷次振荡型,极限与连续之间的关系:,f(x)在x0点连续,f(x)在x0点存在极限,24,练习,设,解,因为,所以,必需且只需,即,必需且只需,即,25,备用题 确定函数,间断点的类型.,解: 间断点,为无穷间断点;,故,为跳跃间断点.,26,(见下图),无穷型,无穷次振荡型,三、小结,1. 函数在一点连续的三个定义、必须满足的,2. 区间上的连续函数;,3. 函数间断点的分类:,间断点,第一类间断点:,跳跃型,可去型,第二类间断点:,三个条件;,27,思考题,(是非题),非,如,处处连续.,但,不连续.,是,28,P65题5 提

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论