高等数学ch08第6讲.ppt_第1页
高等数学ch08第6讲.ppt_第2页
高等数学ch08第6讲.ppt_第3页
高等数学ch08第6讲.ppt_第4页
高等数学ch08第6讲.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二元函数极值的定义,(1),(2),(3),2、多元函数取得极值的条件,证,仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的驻点.,驻点,极值点,问题:如何判定一个驻点是否为极值点?,注意:,求最值的一般方法: 将函数在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值.,与一元函数相类似,我们可以利用函数的极值来求函数的最大值和最小值.,3、多元函数的最值,解,如图,条件极值:对自变量有附加条件的极值,(二)条件极值拉格朗日乘数法,解,则,解,可得,即,(一)问题的提出,一元函数的泰勒公式:,能否用多个变量的多项式来近似表达一个给定的多元函数,并能具体地估算出误差的大小.,(二)二元函数的泰勒公式,其中记号,表示,表示,一般地,记号,证,引入函数,显然,由 的定义及多元复合函数的求导法则,可得,利用一元函数的麦克劳林公式,得,其中,证毕,上式称为二元函数的拉格朗日中值公式.,例 1,解,其中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论