钟吕水利枢纽复合土工膜防渗面板堆石坝设计说明书(新)_第1页
钟吕水利枢纽复合土工膜防渗面板堆石坝设计说明书(新)_第2页
钟吕水利枢纽复合土工膜防渗面板堆石坝设计说明书(新)_第3页
钟吕水利枢纽复合土工膜防渗面板堆石坝设计说明书(新)_第4页
钟吕水利枢纽复合土工膜防渗面板堆石坝设计说明书(新)_第5页
已阅读5页,还剩99页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘 要本次设计主要是为了开发利用B江流域的水利资源,建设一个以发电为主,同时兼顾灌溉、供水、防洪及养殖等综合利用效益的跨流域开发的水利水电枢纽工程。在明确了建设目的并具有了建设依据和条件后设计的枢纽概况如下:B江水利枢纽为复合土工膜防渗堆石坝。最大坝高53.2m,装机6400kW,电站设计水头174m,保证出力1461kW,装有两台3200kW机组,正常蓄水位276.5m,主坝长190m左右,上游边坡1:1.5,下游251高程马道上部边坡1:1.52,马道下部边坡1:1.54。本次设计主要内容为:经洪水调节确定坝顶高程;坝型的比选;第一主要建筑物的设计;施工组织设计。并进行了主体工程投标文件技术标的编写,其中重点对本次设计专题-技术标的施工组织设计进行了设计及编写。复合土工膜防渗堆石坝是一种新的坝型,其防渗材料-复合土工膜的设计、施工、质量控制是该类坝型的技术关键,在本设计说明书第六章第三节有详细说明。本次设计以一般混凝土面板堆石坝和一些已建复合土工膜堆石坝为参考,在注重各细部独立分项设计的同时,综合考虑了整体工程的统一性。在专题的编写中参考已建工程,对钟吕水库主体工程的施工组织进行了设计,确保按期完成本标段工程。在设计过程中既充分运用了所学知识,广泛参考了堆石坝设计、施工技术等相关书籍,并在规范规定内设计,体现了本设计的科学性、规范性。关键词:复合土工膜、堆石坝、防渗、边坡稳定、投标文件技术标、主坝、副坝、施工组织设计、堆石填筑技术AbstractThis design is mainly to develop uses the B river basin the water resources, constructs one to generate electricity primarily,simultaneously gives dual attention to the irrigation, the water supply, the flood prevention and the cultivation and so on comprehensive utilization benefit cross basin development water conservation water and electricity key project.The key position survey which after having been clear about the construction goal and had construction basis and condition designs to be as follows: The B river hydro-junction is the compound earthwork membrane anti-seepage rock-fill dam. Most dam high 53.2m, installs equipment 6400kW, power plant design head 174m, guarantees strives 1461kW, is loaded with two 3200kW units, normal store water level 276.5m, about main dam long 190m, upstream side slope 1:1.5, on downstream 251 elevation training grounds side slope 1:1.52, lower part training ground side slope 1:1.54.The this design primary coverage is: After flood control definite crest elevation; The dam ratio elects; First main buildings design; Construction organization plan. And has carried on the principal part tender documents technology sign compilation, key to this design topic-The technical signs construction organization plan has carried on the design and the compilation. The compound earthwork membrane anti-seepage rock-fill dam is one kind of new dam, its impervious material-The compound earthwork membranes design, the construction, the quality control are this kind of dam technical keys, has the detailed explanation in this design instruction booklet sixth chapter of third. This design and some have constructed the compound earthwork membrane rock-fill dam take the common concretes kneading board rock-fill dam as the reference, while pays great attention various details independent sub-item design, overall evaluation overall project unity. Refers in the special compilation has constructed the project, has carried on the design to Zhong the Lu reservoir principal parts construction organization, guarantees on time the cost sign section project. Already fully utilized in the design process has studied the knowledge, widely has referred to the rock-fill dam design, the construction technique and so on related books, and in the standard stipulated designs, has manifested this design scientific nature, the standards.key word: The compound earthwork membrane, the rock-fill dam, the anti-seepage, the stability of slope, the tender documents technology sign, the host dam, the vice-dam, the construction organization plan, piles up stones reclamation technology目 录目 录1摘 要1Abstract2第一章 综合说明11.1 工程特性表11.2 建设目的和依据31.3 建设的条件31.4 建设的规模及综合利用效益31.4.1 建设规模31.4.2 综合利用效益4第二章 自然地理条件52.1 地形条件52.2 水文特性52.3 工程地质条件62.3.1库区工程地质62.3.2坝址工程地质62.3.3 引水发电隧洞工程地质条件92.4 气象、地震及其他102.4.1 气象、地震102.4.2 天然建筑材料10第三章 设计条件和设计依据113.1 设计任务113.2 设计依据11第四章 洪水调节计算124.1 洪水调洪演算124.1.1 洪水调洪演算原理124.1.2洪水调洪演算方法144.2 洪水标准分析144.3 洪水建筑物的型式选择144.4 调洪演算及泄水建筑物尺寸(孔口尺寸/堰顶高程)的确定164.4.1 调洪演算过程164.4.2 洪水过程线的模拟164.4.3 计算公式164.4.4 计算结果174.4.5 方案选择174.4.6 坝顶高程的确定18第五章 主要建筑物型式选择及枢纽布置215.1 枢纽等别及组成建筑物级别215.2 坝型选择215.2.1 定性分析215.2.2 定量分析265.3 泄水建筑物型式选择275.4 枢纽方案的综合比较275.4.1 挡水建筑物复合土工膜防渗堆石坝275.4.2 泄水建筑物正槽溢洪道275.4.3 水电站建筑物27第六章 第一主要建筑物设计286.1 大坝轮廓尺寸及防浪墙设计286.1.1 L型挡墙顶高程及坝顶高程、宽度286.1.2 坝体分区286.1.3 L型挡墙设计296.1.4 坝坡与马道356.2 堆石料设计366.2.1堆石料基本特性参数366.2.2主、次堆石料设计366.2.3垫层、过渡层设计366.2.4堆石体设计技术参数表376.2.5堆石体填筑技术参数表376.3 复合土工膜设计376.3.1复合土工膜的选型和分区376.3.2土工膜强度校核396.4 大坝稳定分析416.4.1 计算原理及方法416.4.2 坝坡稳定分析426.4.3 坝坡面复合土工膜的稳定分析436.5 副坝设计456.5.1 副坝及主坝的连接及副坝型式选择456.5.2 副坝的坝体地基处理防渗设计486.6 细部构造设计及地基处理496.6.1 坝顶构造496.6.2 护坡设计496.6.3 分缝及止水496.6.4 坝基处理506.7 趾板设计536.7.1 趾板的作用536.7.2 坝轴线选取556.7.3 趾板最大剖面设计556.7.4 趾板各剖面设计566.7.5趾板分块576.7.6 趾板配筋586.8 坝体沉降估算586.9 工程量计算596.9.1 工程量计算的依据及项目划分596.9.2主坝工程量计算596.9.3副坝工程量计算606.9.4工程量清单61第七章 泄水建筑物设计627.1 泄水建筑物型式选择627.2 溢洪道的组成部分和总体布置627.2.1 溢洪道总体布置627.2.2 引水渠设计637.2.3 控制堰设计647.2.4 泄槽设计677.2.4 出口消能设计71第八章 施工组织设计748.1 基本资料分析748.1.1工程概况748.1.2 施工条件748.1.3 有效工日分析758.2 施工导流768.2.1 导流标准768.2.2 施工导流方案及大坝施工分期778.2.3 导流建筑物规划布置778.3 主体工程施工808.3.1堆石体施工808.3.2 堆石体施工858.3.3 导流隧洞施工878.4 施工交通运输道路布置908.5 施工总进度91参考文献92- 5 -第一章 综合说明1.1 工程特性表表1-1 工程特性表序号及名称单 位数 量备 注一、水库流域面积km233正常高水位m276.5死水位m248.5汛前限制水位m275.0设计洪水位m276.8校核洪水位m278.2设计泄洪流量m3/s214.0校核泄洪流量m3/s348.0总库容万m32154.8死库容万m3200.0兴利库容万m31743.4有效库容万m31954.8二、大坝坝型复合土工膜防渗堆石坝坝顶高程m278.2防浪墙顶高程m279.4坝顶宽度m6.0最大坝高m53.2上游坝坡11.5下游坝坡11.52(马道上部)下游坝坡11.52(马道下部)马道高程m251.0主坝坝轴线长m189.5副坝型式重力式挡墙副坝坝轴线长m108.62导流洞型式圆形导流洞进口底高程m227.5导流洞出口底高程m226.5导流洞半径Rm2.4导流洞长度m200三、溢洪道溢流前缘净宽m10堰顶高程m272设计流量m3/s214.0校核流量m3/s348.0闸门型式平板闸门尺寸(宽高)m2106四、厂房系统1动能指标最大净水头m174.0额定水头m174.0最小水头m143.0引用流量m3/s5.0额定出力kW6400保证出力kW14612厂房厂房型式地面式厂房面积m231.515.7主厂房宽度m10.8机组台数2机组安装高程m103.0水轮机型号HL110-WJ-76发电机型号SFW-J3000-6/1480开关站面积m211.527.25五、引水系统进水口型式塔式进水口高程m244.7压力钢管直径m1.2管壁厚度mm10有压隧洞洞径m1.8衬砌厚度cm50钢衬厚度mm4调压井最高涌浪水位m280.0调压井最低涌浪水位m226.32六、工程量1主坝基础开挖量m343992.56堆石料填筑量m3447421.8混凝土方量(L型挡墙)m3804.525混凝土方量(趾板)m3710.4682混凝土方量(现浇混凝土保护层)m31125.0712副坝基础开挖量m31168.221混凝土方量m34706.2513溢洪道溢洪道开挖量m316979.53混凝土衬砌方量m32883.251.2 建设目的和依据B江水利枢纽工程是以发电为主,同时兼顾了灌溉、供水、防洪及养殖等综合利用效益的跨流域开发的水利枢纽工程。1.3 建设的条件建设资金基本到位,施工准备工作已经就绪。1.4 建设的规模及综合利用效益1.4.1 建设规模本电站装机6400 kW,保证出力1461kW。厂房总面积为31.515.7。开关站尺寸为11.527.25。水库总库容(校核洪水位以下的全部库容)为2154.8万m3。1.4.2 综合利用效益1.4.2.1 发电装机6400kW,电站设计水头为174m,多年平均发电量为1700104kWh,保证出力为1461kW。本电站装2台3200kW机组,正常蓄水位为276.5m,引水式发电,引水隧洞布置在右岸山体中,最大引用流量为5m3/s。厂房位于段莘水江湾湖山村左岸下游340m处,地面式,总面积为31.515.7,其中主厂房宽10.8m,主厂房内安装二台HL110-WJ-76,配SFW-J3000-6/1480的水轮发电机组,机组安装高程为103m,开关站位于厂房的左上侧,尺寸为11.527.25。1.4.2.2 灌溉下游利用发电尾水灌溉,上游增加灌溉面积1.0万亩。1.4.2.3 供水供钟吕村及其下游村民生活用水。1.4.2.4 防洪可减轻洪水对钟吕村及下游江湾镇的威胁,要求设计洪水最大下泄量限制为255m3/s。1.4.2.5 渔业水库蓄水后,正常蓄水位时水库面积1.09km2,为发展养鱼等水产养殖业创造了有利条件。第二章 自然地理条件2.1 地形条件钟吕水库位于江西婺源县乐安河一级支流晓港水的钟吕村上游约160m处,坝址以上控制流域面积33km。晓港水在钟吕村上游约300m处,由两支水系汇合而成,其中东支发源于石耳山,南支发源于清湾头尖,河流在晓港村汇入乐安河,本流域上游为中低山区,山势陡峭,中下游为低山丘陵区,山体凌乱,冲沟发育。2.2 水文特性据水文资料推算,坝址处多年平均流量1.28m/s,多年平均总径流量4040万m,p=0.1%的洪峰流量为551.5m/s,三日洪量为1569万m,p=2%的洪峰流量为364.5m/sec,三日洪量为965万m。流域多年平均降雨值2047.7mm。正常蓄水位276.5m,对应库容V正=1950.0万m。死水位248.5m,对应V死=185.0万m。流域河段多年平均输砂量为0.29万吨,泥沙容重估算为1.3t/m。估计水库淤积年限与高程关系(见表2-1):表2-1 淤积年限与高程关系表淤积年限(年)泥沙淤积量(万m)淤积高程(m)5011.05236.0810022.1237.78水库水位库容关系曲线(见表2-2):表2-2 水库水位库容关系曲线表水位(m)227.5236.08237.78248276278.11库容(104m)011.0522.1172.01910.02145.2坝址水位-流量关系曲线(见表2-3):表2-3坝址水位-流量关系曲线表水位(m)227.5228.0228.5229.0229.5230.0230.5流量(m/s)06.028.966.77121.97196.05281.782.3 工程地质条件2.3.1库区工程地质库区属构造剥蚀低山地貌,山势陡峭,分水岭雄厚,地形封闭,植被良好, 未见滑坡等不良物理地质现象。组成库岸及库盆的地层岩性主要为前震旦系板溪群的千枚状绿泥绢云母板岩,千枚岩和变质砂岩。库区岩石受多次构造运动的影响,断层和裂隙发育,岩石的褶皱和挠曲也很常见,构造行迹以北东向压扭性为主,常见有北西向张扭性断裂和近东西向平推断层,未见有较大的导水断裂连通库外。库区地下水类型主要为第四系松散堆积物孔隙潜水和基岩裂隙水,受大气降水补给,排泄于河谷与河床,库岸山体地下水位较高,一般在300m高程以上,组成库岸及库盆的岩石表部透水性强,但深部岩石透水性微弱,属相对不透水层。库区工程地质良好,水库蓄水后,不存在永久渗漏、岸边再造、浸没及水库诱发地震等问题。2.3.2坝址工程地质2.3.2.1 地貌 坝址区属构造剥蚀低山地貌,山顶高程为280450m,坝区河床较宽,约2050m,为一“U”型河谷,两岸山坡不对称,左岸山体雄厚,山坡角3040度,右岸山体较为单薄,山坡角2030度,且在右岸有一低矮垭口,顶高程约276m,坝址区冲沟发育,且切割较深,未见滑坡等不良物理地质现象,自然边坡稳定。2.3.2.2 地质岩性坝址区出露的地层岩性为前震旦系板溪群第四段绿泥绢云母千枚岩夹变质砂岩,第四系松散堆积物及变质辉常岩,其岩性特征为:1、泥绢云母千枚岩:灰绿色,主要矿物成分为绢云母、石英、长石、绿泥石等,千枚状构造,其余碎屑显微鳞片状构造,岩石挠曲和褶皱常见,片理极发育,岩层产状N4060E,NW3860。2、质砂岩:青灰色,主要矿物成分未石英、长石及岩屑等,中细砂粒结构,层状构造,有轻微的变质,岩石结构致密,岩性坚硬。3、第四系松散堆积物主要为冲击砂卵石,漂石,厚11.5m,分布于河床部位,残坡积壤土、碎块石土,厚16m,分布于两岸山坡及冲沟部位。4、质辉长岩:暗绿、深绿色,主要矿物成分为绿泥石、绿帘石、纤闪石及少量石英,辉长结构,块状构造,微具定向构造,岩石质地坚硬,在坝址区呈岩株或岩脉产出。2.3.2.3 地质构造坝址区地处华夏系及新华夏系构造复合部位,出露的地层古老,经历了多次构造运动,坝址区断层裂隙发育,岩石破碎,岩层褶皱和挠曲常见。在初步设计阶段共发现断层20条。坝基开挖后,在坝基部位新发现小断层14条及两条风化夹层,但密度均较小。1、主要断层:F5压扭性断层:产状N35,NW80,宽0.10.15m,主要由片状岩、碎性岩组成,构造岩强风化,性状较差,出露于左岸趾板齿槽228m高程附近。F12压扭性断层:产状N40E,NW66,宽0.20.4m,主要由片状岩组成,构造岩呈强风化,性状较差,出露于左岸趾板齿槽236m高程附近。F22层间挤压破碎带:产状N55E,NW55,宽0.10.25m,主要由片状岩、石英脉组成,构造岩强风化,性状较差,出露于左岸趾板齿槽260m高程附近。F29压扭性断层:产状N25E,NW70,宽0.080.1m,主要由碎裂岩组成,见0.51.5cm厚的断层泥继续分布,断层间较平,构造岩呈强风化,性状差,出露于河床趾板齿槽部位。2、裂隙:坝址区岩石裂隙发育,岩石破碎,坝基开挖后,对坝基岩石裂隙作了统计,主要有两组发育方向:一是NE向层面,裂隙产状N4060E,NW3860,裂面稍扭,普遍见Fe、Mn质浸染,表面张开或微张,局部见次生泥充填,延伸长,极发育;二是NW3050W,SW或NE4080,裂面光滑平整,见Fe、Mn质浸染,间距一般20cm,延伸较短,发育。3、风化夹层:坝基开挖后,在河床右侧趾板齿槽部位发现了两条风化夹层WJ1,WJ2,产状N42E,NW0.7;弱风化岩石0.55;饱和抗压强度:微新岩石40MPa;弱风化岩石25MPa;表2-4 堆石试验参数表组别试验干密度(g/cm)C(KPa)KnRfGFDA2.104738.58800.350.820.460.201.5B2.056037.72600.320.810.430.181.8(2)复合土工膜试验参数(见表2-5)表2-5 复合土工膜试验参数表项 目单 位量 值备 注单位面积质量g/m211001300350/0.4/350350/0.6/350膜 厚250m高程以上mm0.4250m高程以下mm0.6周边缝等处mm0.8周边缝、水平缝、分缝处宽条纵向拉伸强度kN/m1518350/0.4/350350/0.6/350伸长率%50窄条纵向拉伸强度kN/m1518350/0.4/350350/0.6/350伸长率%50摩 擦 系 数与水泥砂浆0.577与现浇砼0.6粘 结 力kg/cm20.1渗 透 系 数cm/s110-112.3.3 引水发电隧洞工程地质条件引水发电隧洞通过地段属低山地貌区,山顶高程300400m相对高程100200m,隧洞区冲沟发育,山体切割较深且较零乱,地表植被发育,未见有不良物理地质现象。隧洞围岩由绢云母千枚岩、变质粉砂岩、凝灰质千枚岩与粉砂质板岩层。绢云母千枚岩偶夹粉砂质板岩及粉砂质板岩等组成。岩石层面裂隙极发育、褶皱、挠曲严重,断层发育切规模大,性状差,其中绢云母千枚岩、凝灰质千枚岩水理性质较差,且遇水易软化,软化系数低,凝灰质千枚岩成分复杂,还易于风化。绢云母千枚岩与凝灰质千枚岩在洞线出露的长度占洞线总长的19%,说明洞线围岩大部分由绢云母千枚岩与凝灰质千枚岩构成。根据工程类比可知:千枚岩的单轴饱和抗压强度为1640Mpa,软化系数0.630.93,属半坚硬较软化,抗水性较差的片状(薄层状)岩体。2.4 气象、地震及其他2.4.1 气象、地震流域内气候:流域内多年平均气温16.7,以一月份平均气温4.6为最低,七月份平均气温28为最高,历年极端最高气温41,极端最低气温-11。风速及吹程:多年平均最大风速12.6m/s,吹程1.6km。地震烈度:坝址及库区地震烈度属度以下,设计时可不考虑地震荷载。降 雨 量:流域多年平均降雨均值2047.7mm。2.4.2 天然建筑材料2.4.2.1 砂砾石料坝址流域砂砾石料贫乏,但在江湾水和段莘水流域有梨苗场和古玩料场,距大坝约1015km,有公路相通,运输方便。梨苗场 、古玩料场均为砂卵(砾)石混合料,砂卵(砾)石储量丰富,质量良好,满足工程要求。2.4.2.2 堆石料坝址附近广泛分布绿泥绢云母千枚岩,弱至微风化岩石,岩性较坚硬,力学强度较高,质量较好,储量丰富,可作为大坝堆石料。坝址附近粘土很少,坝址上下游有一定的粘土分布,均为当地农民耕地。第三章 设计条件和设计依据3.1 设计任务在对原始材料进行综合分析的基础上,并结合本次设计的专题研究,要求:(1)根据防洪要求,对水库进行洪水调节计算,确定坝高程及岸坡溢洪道尺寸;(2)通过分析,对可能的方案进行比较,确定枢纽组成建筑物型式,轮廓尺寸及水利枢纽布置方案;(3)详细做出大坝设计,通过比较,确定坝的基本剖面与轮廓尺寸,拟定地基处理方案和坝身结构,进行水力、静力计算;(4)进行专题的设计:技术标的施工组织设计;对总进度计划编制进行深入研究。3.2 设计依据包括相关参考文献、主要设计规范以及上级机关批文。1、中华人民共和国水利部.混凝土面板堆石坝设计规范.北京:中国水利水电出版社,19982、中华人民共和国水利部.水利水电工程土工合成材料应用技术规范(SL/T225-98).北京:中国水利水电出版社,19983、中华人民共和国水利部.水工建筑物荷载设计规范.北京:中国水利水电出版社,19984、中华人民共和国水利部.水利水电工程等级划分.北京:中国水利水电出版社,20005、中华人民共和国水利部.水工挡土墙设计规范.北京:中国水利水电出版社,2007第四章 洪水调节计算4.1 洪水调洪演算4.1.1 洪水调洪演算原理洪水在水库中运行时,水库沿程的水位、流量、过水断面、流速等均随时间而变化,其流态属于明渠非恒定流。根据水力学,明渠非恒定流的基本方程,即圣维南方程组为:连续性方程: (4-1)运动方程: (4-2)式中: 过水断面面积(m2); 时间(s); 流量(m3/s); 沿水流方向距离(m); 水位(m); 重力加速度(m/s2); 断面平均流速(m/s); 流量系数(m3/s)。一般采用简化的近似解法,长期以来,普遍采用瞬时法,即用有限差值来代替微分值,并加以简化,以近似地求解一系列瞬时流态。瞬时流态法将式(41)进行简化而得出基本公式,再结合水库的特有条件对基本公式进行简化,得出用于水库调洪计算的实用公式: (4-3)式中:, 分别为计算时段初、末的入库流量(m3/s); 计算时段中的平均入库流量(m3/s) ,=(+)/2;, 分别为计算时段初、末的下泄流量(m3/s); 计算时段中的平均下泄流量(m3/s),;, 分别为计算时段初、末水库的蓄水量(m3); 与之差; 计算时段。公式(4-3)表示为一个水量平衡方程式,表明:在一个计算时段内,水库水量与下泄水量之差即为该时段中水库蓄水量的变化。显然,公式中并未计入洪水入库处至泄洪建筑物间的行进时间,也未计入沿程流速变化和动库容等影响,这些因素均是其近似性的一个方面。当已知水库入库洪水过程线时,、均为已知,、,则是计算时段开始时的初始条件。于是,式(4-3)中的未知数仅剩下、,当前一时段的、求出后,其值即成为后一时段的、值,使计算能逐步地连续进行下去。仅一个方程来求解、是不可能的,必须再有一个方程式,与式(4-3)联立,才能同时解出、的确定值,假定暂不计及自水库取水的兴利部门泻向下游的流量,则下泻量是泄水建筑物泻流水头的函数,而当泄洪建筑物的型式、尺寸等已确定时 (4-4)式中: 系数,与泄洪建筑物的型式、尺寸、闸孔开度及淹没系数有关; 指数,对于堰流B一般等于3/2,对于闸孔出流一般B=1/2。根据水力学公式,与的关系曲线可求。若是堰流即为库水位Z与堰顶高程之差;若是闸孔出流即为库水位Z与闸孔中心线高程之差。因此可以根据与的关系曲线求出Z与的关系曲线,并且由库水位Z,又可借助于水库容积特性曲线,求出相应的水库蓄水容积,则式(4-4)可用下泄流量与库容的关系曲线代替,即,与式(4-3)联立方程组,求解、。当水库承担下游防洪任务时,要求保持不大于下游允许的最大下泄流量时,就要利用闸门控制流量,但计算的基本公式和方法与上述一致。本设计泄水建筑物是正槽溢洪道。采用闸门全开式泄洪,故下泄流量是,即为库水位Z与堰顶高程之差,由于资料有限仅有0.1%和2%的流量及其对应的三日洪峰流量,无法描绘出洪水过程线,故采用三角形法拟画出洪水过程线(具体做法见本章4.4节)。本设计中进行调洪演算是为了定出设计、校核水位及相应的下泄流量,已知下泄量与水头的关系曲线(即式4-4),通过假定下泄流量,可利用洪水过程线计算出水库蓄水量,通过可查出对应的水位,得到曲线,通过两条q-Z曲线即得到设计、校核水位及相应流量。4.1.2洪水调洪演算方法进行洪水调节计算的方法很多,目前常用的是:列表试算法,半图解法。由于本工程是以发电为主要任务的枢纽工程,故本设计中以引水发电流量作为起调流量(5m3/s)。但是因其较小,故而在实际操作中会出现先放水再拦洪的情况。鉴于本工程等别较低且没有足够的水文资料,所以采用近似的方法简化三角形法,即高切林法。4.2 洪水标准分析由给定的资料情况,采用以下洪水标准:设计情况,采用50年一遇的洪水标准P=2%的洪峰流量为364.5 m3/s,三日洪量为965万m3。校核情况,采用千年一遇的洪水标准p=0.1%的洪峰流量为551.5 m3/s,三日洪量为1569万m3。4.3 洪水建筑物的型式选择水利枢纽中的泄水建筑物一般包括设于河床的溢流坝、泄水闸、泄水孔,设于河岸的溢洪道、泄水隧洞等。本设计采用坝型为复合土工膜防渗堆石坝(具体见5.2节),因此泄水建筑物一般不布置在河床。下面根据本工程的地形、地质条件,对正槽溢洪道、侧槽溢洪道及泄水隧洞这三种泄水建筑物进行比较选择。泄水隧洞布置得一般原则是:地质条件好,路线短,水流顺畅,与枢纽其他建筑无相互不良的影响。洞线宜选择在沿线地质构造简单、岩体完整稳定、岩性坚硬,上覆岩体厚度大,水文地质条件有利和施工方便的地段。避开围岩破碎、地下水位高或渗水量很大的岩层和可能坍塌的不稳定地带,同时防止洞身离地表太浅。本工程坝址区地处华夏系及新华夏系构造复合部位,坝址区断层裂隙发育,岩石破碎,岩层坍塌和挠曲常见。坝址区岩石的透水性及相对不透水层经先导孔压水试验,左岸相对不透水层埋深1024米,上部透水层q值为6.7196.7Lu,大者达到341.7Lu,属中等-严重透水层。本工程最大坝高53.0米,正常蓄水位276.3米,因此要避开透水层而布置泄水隧洞,工程量显然很大,而且本工程地质条件不好,故不采用隧洞泄洪。河岸溢洪道是布置在拦河坝坝肩或拦河坝上游水库库岸的泄洪通道,上游水库多余的来洪经此泄往下游河床,常以堰流方式泄水,有较大的超泄能力。包括两种型式:正槽溢洪道过堰水流方向与堰下泄槽纵轴线方向一致和侧槽溢洪道水流过堰后急转近90,再经泄槽下泄。从地质条件上来说,溢洪道应力争位于较坚硬的岩基上,但较泄洪隧洞要求较低,但在地基条件差的基岩上,要注意衬砌和防冲的设计。同时对于堆石坝而言,河岸溢洪道可与坝体相接,从而既可减少溢洪道的开挖量,也可以减少坝体的填筑量。因此,本工程泄水建筑物采用河岸溢洪道。正槽溢洪道在水力学上的特点是,泄流能力完全由堰的型式、尺寸以及堰顶水头决定,过堰流量稳定于某一值后,泄槽各断面的流量也随之都达到同一值,故水流平顺稳定,运用安全可靠,另外,结构简单、施工方便。侧槽溢洪道在当水利枢纽的拦河坝难以本身溢流,且河岸陡峭,布置正槽溢洪道将导致巨大的开挖量时,可能成为比较经济的泄水建筑物。与正槽溢洪道相比,侧槽溢洪道前缘可少受地形限制,而向上游库岸延伸,由增加溢流前缘宽度而引起开挖量增加较少,从而可以以较长的溢流前缘宽度换取较低的调洪水位,或换取较高的堰顶高程。本工程的溢洪道布置在左岸(说明见5.5节),岸坡较陡优选侧槽溢洪道,但是,溢洪道的兴建需要注意和解决的问题是,高水头、大流量及不利地形地质条件下,高速水流引起的一系列水力学和结构问题,而侧槽溢洪道的水流现象复杂,进槽水流须立即转弯近90,再顺槽轴线下泄,对每一个不同的侧槽断面,其所通过的流量是不相同的,然而,侧槽内的水流现象的复杂性,并不仅仅表现在流量的沿程的变化上,水流自堰跌入侧槽后,在惯性的作用下,冲向侧槽对岸壁,并向上翻腾,然后再重力作用下转向下游流去,在槽中形成一个横轴螺旋流。考虑到侧槽溢洪道水流现象的复杂,而且本工程坝址区地处华夏系及新华夏系构造复合部位,出露的地层古老,经历了多次构造运动,坝址区断层裂隙发育,岩石破碎,岩层褶皱和挠曲常见。若采用侧槽溢洪道,考虑侧槽内流态复杂,则侧槽及泄水段的衬砌工程含量很大;同时考虑到堆石坝溢洪道可紧靠坝体布置这一优点,同时由于本枢纽的坝体不是很高,正槽溢洪道的开挖量不会增加很大。综上所述,结合本工程的地形、地质条件,泄水建筑物采用正槽溢洪道,布置于左岸与坝体相接。4.4 调洪演算及泄水建筑物尺寸(孔口尺寸/堰顶高程)的确定4.4.1 调洪演算过程通过洪水资料,由三角形法作出设计情况和校核情况下的洪水过程线;假定堰高、堰宽,确定各情况下的起调流量;假定不同的下泄流量q,由洪水过程线求出库容,由库容,查水位库容曲线,找出相应的水位,从而对于每一组情况下可作出一条QH曲线;根据公式,又可作出一条QH曲线;对应于每一种情况,可从QH图中确定相应交点的Q和H值。4.4.2 洪水过程线的模拟由于本设计中资料有限,仅有p=2%、p=0.1%的流量及相应的三日洪水总量,无法准确画出洪水过程线。按照规范,洪水过程线应用P型曲线拟合,但实际操作过程中较难,故本设计中采用三角形法模拟洪水过程线,并在曲线形状上尽量拟合为P型。根据洪峰流量和三日洪水总量,可作出一个三角形(如图中虚线),根据水量相等原则,对三角形进行修正,得到一条模拟的洪水过程线(如图中的实线)。图4-3 调洪演算图4-1 三角形法图4-2 洪水过程线 4.4.3 计算公式计算采用公式: (4-5)式中:侧收缩系数,=0.9;m流量系数,m=0.502; B溢流孔口净宽; H堰上水头。注:1、由于在初步设计是不考虑淹没出流的情况,故淹没系数直接取为1。2、由水力学书可知。单孔闸门,则,圆弧边墩,则,由上可得上述公式简化为:。4.4.4 计算结果计算结果见表4-1: 表4-1 调洪方案汇总表堰顶高程(m)堰顶宽度B(m)方案设计下泄流量(m3/s)设计洪水位(m)校核下泄流量 (m3/s)校核洪水位(m)设计超高Z(m)校核超高Z(m)27181202276.3315278.402.192215276343.6277.9-0.31.6103225.05275.9355.8277.6-0.41.327284193277.2320279.10.92.895204277332278.70.72.4106214276.8348278.20.51.927387190277.8296280.21.53.998196277.6317279.71.33.4109204277.5328279.41.23.1注:超高Z =所得洪水位-正常蓄水位。4.4.5 方案选择以上9个方案上游水位设计超高Z均不超过2m,校核超高Z均不超过4m,且均满足允许下泄流量,方案2、3的设计洪水位小于本设计的正常蓄水位,故舍弃。方案4、7、8的设计下泄流量均小于200 m3/s,太小,故不采用。因此在剩余的1、5、6、9三方案中需通过经济技术比较:本设计对此只做定性分析,同时也考虑与导流洞结合的问题。一般情况下坝高是由校核情况控制的,超高越大坝就越高,大坝工程量加大;B大则增加隧洞的开挖及其它工程量,而Q/B即单宽流量越大消能越困难,衬砌要求也高。方案1的Q/B偏大;方案9的Q/B虽然最小但是泄流量偏小;方案5与方案6相比不仅Q/B大且超高Z大,增加主体工程量,并且方案6比方案5的下泄量更接近允许设计洪水最大下泄量,所以经过综合比较最后采用6方案:即堰顶高程272m,溢流孔口净宽10m;该方案设计洪水位276.8m,设计下泄流量214m3/s,校核洪水位278.2m,校核泄洪量348m3/s。4.4.6 坝顶高程的确定4.4.6.1 工程等别及建筑物级别和洪水标准的确定由校核洪水位278.2m查得相应水库的总库容为0.21548108 m3,水电站装机容量为6400kW, ,根据我国水利部颁发的现行规范水利水电工程等级划分及洪水标准(SL252-2000),本工程,即钟吕水利枢纽工程:工程等别为三等,控制属于中型工程,主要建筑物级别为3级、次要建筑物级别为4级、临时建筑物级别为5级。水工建筑物为3级的洪水标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论