




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人民版初中八年级上册第十三章,13.4 最短路径问题,广西师范大学数学与统计学院2012级数学 莫 夏,“两点的所有连线中,线段最短” “连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路问题,复习旧识,问题 相传,古希腊亚历山大里亚城里有一位久 负盛名的学者,名叫海伦有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地到河边什么地方饮马可使他所走的路线全程 最短?,探索新知,可将上述问题转化为以下数学问题,将A,B 两地抽象为两个点,将河l 抽象为一条直 线,如图,探索新知,(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和;,探索新知,(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图),作法: (1)作点B 关于直线l 的对称 点B; (2)连接AB,与直线l 相交 于点C 则点C 即为所求,探索新知,如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,证明:如图,在直线l 上任取一点C(与点C 不 重合),连接AC,BC,BC 由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC,探索新知,问题 你能用所学的知识证明AC +BC最短吗?,探索新知,问题 你能用所学的知识证明AC +BC最短吗?,证明:在ABC中, ABAC+BC, AC +BCAC+BC 即 AC +BC 最短,运用新知,练习 如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径,运用新知,基本思路: 由于两点之间线段最短,所以首先可连接PQ,线 段PQ 为旅游船最短路径中的必经线路将河岸抽象为 一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到 一点R,使PR与QR 的和最 小”,1.学会了什么? 2.体会了什么?,归纳小结,能利用轴对称解决简单的最短路径问题,利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,体会图形的变化在解决最值问题中的作用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考化学俗称试题及答案
- 煤层气固井工设备调试考核试卷及答案
- 酒钢网络大学试题及答案
- 聚甲醛装置操作工入职考核试卷及答案
- 煤气化备配煤工三级安全教育(公司级)考核试卷及答案
- 丙烯酰胺装置操作工数字化技能考核试卷及答案
- 农发行盘锦市盘山县2025秋招笔试行测高频题及答案
- 防锈处理工适应性考核试卷及答案
- 2025年保洁管理考试试题及答案
- 硬质合金精加工工晋升考核试卷及答案
- 联名合作授权协议书范本
- 2025年广东中考历史试卷真题解读及答案讲评课件
- 律师从事公司自行清算业务操作建议流程
- 营救小羊中班课件
- 橡皮筋驱动小车说课课件
- 跟岗干部管理办法中组部
- 乐理知识入门教学课件
- 培训安全知识内容
- 医疗器械岗位职责、质量管理制度培训试题及答案
- 电网调度行业脑机接口技术应用案例分析
- 井巷工程整改方案(3篇)
评论
0/150
提交评论