




已阅读5页,还剩99页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter 3 氨基酸,蛋白质是生物功能的体现者,而构成蛋白质的基本单位是氨基酸。蛋白质在酸、碱或酶的作用下,可逐步降解为氨基酸。组成蛋白质的氨基酸常见的有20种。成千上万的不同蛋白质实际上就是氨基酸的种类、数目及排列顺序不同。,Section 1 蛋白质水解,用H+,OH-或酶将蛋白质彻底水解,可以得到许多种氨基酸的混合物,说明氨基酸是蛋白质的基本结构单位。 蛋白质 蛋白胨 多肽 二肽 氨基酸 Mr: 大于 104 2x103 1000500 200 100,1、酸水解,条件:510倍的20%的盐酸煮沸回流1624小时,或加压于120水 解2小时。 优点:可蒸发除去盐酸,水解彻底,终产物为L氨基酸,产物单一,无消旋现象。 缺点:色氨酸破坏,并产生一种黑色的物质:腐黑质,水解液呈黑色。 2、 碱水解 条件:4mol/L Ba(OH)2 或6mol/L NaOH煮沸6小时。 优点:水解彻底,色氨酸不被破坏,水解液清亮。 缺点:产生消旋产物,破坏的氨基酸多,一般很少使用。 3、 蛋白酶水解 条件:蛋白酶如胰蛋白酶、糜蛋白酶,常温3740,pH值58 优点:氨基酸不被破坏,不发生消旋现象。 缺点:水解不完全,中间产物多。 蛋白质酸碱水解常用于蛋白质的组成分析,而酶水解用于制备蛋白质水解产物。,Section 2 氨基酸的结构通式,2). 除甘氨酸外,其它所有氨基酸分子中的-碳原子都为不对称碳原子,所以:A.氨基酸都具有旋光性。B.每一种氨基酸都具有D-型和L-型两种立体异构体。目前已知的天然蛋白质中氨基酸都为L-型。,1、氨基酸的结构 氨基酸是蛋白质水解的最终产物,是组成蛋白质的基本单位。从蛋白质水解物中分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨基酸在结构上的共同特点为:,1). 与羧基相邻的-碳原子上都有一个氨基,因而称为-氨基酸,COOH H2N C H R R基团,-氨基酸基本结构通式,2、构成蛋白质的氨基酸的结构特征,(1)除Pro外,都属-氨基酸,Pro 为-亚氨基酸: (2)都属L-氨基酸; (3)除Gly外,都具有旋光性; (4)为两性电解质。 由于R基团不同,各种氨基酸在性质上的差异很大,如吸收光谱、等电点(pI)、解离常数(Ka)、颜色反应、稳定性、对金属的络合能力等。因此,不同氨基酸组成的蛋白质,性质和功能千差万别。,中性aa (1)按R基团的酸碱性分 酸性aa 碱性aa (2)按R基团的 非极性aa(9种) 电性质分 极性不带电荷aa(6种) 极性aa 带正电荷aa(3种) 带负电荷aa(2种),脂肪族aa(3)按R基团的化学结构分 芳香族aa 杂环族aa,Section 3 氨基酸的分类,1.构成蛋白质的20种氨基酸,2.人体所需的八种必需氨基酸,赖氨酸(Lys) 缬氨酸(Val) 蛋氨酸(Met) 色氨酸(Try) 亮氨酸(Leu) 异亮氨酸(Ile) 酪氨酸(Thr) 苯丙氨酸(Phe) 婴儿时期所需: 精氨酸(Arg)、组氨酸(His) 早产儿所需:色氨酸(Try)、半胱氨酸(Cys),3.几种重要的不常见氨基酸 在少数蛋白质中分离出一些不常见的氨基酸,通常称为不常见蛋白质氨基酸。这些氨基酸都是由相应的基本氨基酸衍生而来的。其中重要的有4-羟基脯氨酸、5-羟基赖氨酸、N-甲基赖氨酸、和3,5-二碘酪氨酸等。这些不常见蛋白质氨基酸的结构如下,Section 4 氨基酸的重要理化性质,1.一般物理性质 常见氨基酸均为无色结晶,其形状因构型而异,溶解性:各种氨基酸在水中的溶解度差别很大,并能溶解于稀酸或稀碱中,但不能溶解于有机溶剂。通常酒精能把氨基酸从其溶液中沉淀析出。 (2) 熔点:氨基酸的熔点极高,一般在200以上。 (3) 味感:其味随不同氨基酸有所不同,有的无味、有的为甜、有的味苦,谷氨酸的单钠盐有鲜味,是味精的主要成分。 旋光性:除甘氨酸外,氨基酸都具有旋光性,能使偏振光平面向左或向右旋转,左旋者通常用(-)表示,右旋者用(+)表示。 (5)光吸收:构成蛋白质的20种氨基酸在可见光区都没有光吸收,但在远紫外区(220nm)均有光吸收。在近紫外区(220-300nm)只有酪氨酸、苯丙氨酸和色氨酸有吸收光的能力。,酪氨酸的max275nm,275=1.4x103; 苯丙氨酸的max257nm,257=2.0x102; 色氨酸的max280nm,280=5.6x103;,2.氨基酸的两性解离性质,氨基酸在结晶形态或在水溶液中,并不是以游离的羧基或氨基形式存在,而是离解成两性离子。在两性离子中,氨基是以质子化(-NH3+)形式存在,羧基是以离解状态(-COO-)存在。 在不同的pH条件下,两性离子的状态也随之发生变化,pH 1 7 10 净电荷 +1 0 -1 正离子 两性离子 负离子 等电点PI,氨基酸既含有氨基,能像碱一样接受H+,又含有羧基,像酸一样可电离出H+,所以氨基酸具有酸碱两性性质,是一类两性电解质。 As an acid(proton donor): As a base(proton acceptor):,不同pH时氨基酸以不同的离子化形式存在: 氨基酸所带静电荷为“零”时,溶液的pH值称为该氨基酸的等电点(isoelectric point),以pI表示。,实验证明在等电点时,氨基酸主要以两性离子形式存在,但也有少量的而且数量相等的正、负离子形式,还有极少量的中性分子。 当溶液的pH=pI时,氨基酸主要以两性离子形式存在。 pHpI时,氨基酸主要以负离子形式存在。,3.氨基酸的等电点,当溶液浓度为某一pH值时,氨基酸分子中所含的-NH3+和-COO-数目正好相等,净电荷为0。这一pH值即为氨基酸的等电点,简称pI。在等电点时,氨基酸既不向正极也不向负极移动,即氨基酸处于两性离子状态。 侧链不含离解基团的中性氨基酸,其等电点是它的pKa1和pKa2的算术平均值:pI = (pKa1 + pKa2 )/2 同样,对于侧链含有可解离基团的氨基酸,其pI值也决定于两性离子两边的pKa值的算术平均值。 酸性氨基酸:pI = (pKa1 + pKaR-COO- )/2 碱性氨基酸:pI = (pKa2 + pKaR-NH2 )/2,各种aa都有各自的等电点。在酸性溶液中(pHpI)带负电荷。 例:在pH=6.0的混合溶液中 Ala兼性离子 Lys带正电荷 Glu带负电荷,在溶液的任一条件下: pH=pKa+lg质子受体/质子供体 对于中性aa,加酸 pKa 取pKa1 加碱 pKa 取pKa2 知道了溶液的pH,即可计算出在任一pH条件下,一种aa中各种离子的比例。,4.氨基酸的化学性质 (1)与茚三酮的反应,氨基酸与水合茚三酮共热,发生氧化脱氨反应,生成NH3与酮酸。水合茚三酮变为还原型茚三酮。 加热过程中酮酸裂解,放出CO2,自身变为少一个碳的醛。水合茚三酮变为还原型茚三酮。 NH3与水合茚三酮及还原型茚三酮脱水缩合,生成蓝紫色化合物。,反应要点 A.该反应由NH2与COOH共同参与 B.茚三酮是强氧化剂 C.该反应非常灵敏,可在570nm测定吸光值 D. 测定范围:0.550g/ml E.脯氨酸与茚三酮直接生成黄色物质(不释放NH3) 应用: A.氨基酸定量分析(先用层析法分离) B.氨基酸自动分析仪: 用阳离子交换树脂,将样品中的氨基酸分离,自动定性定量,记录结果。,(2)与甲醛反应,反应特点 A.为- NH2的反应 B.在常温,中性条件,甲醛与- NH2很快反应,生成羟甲基衍生物,释放氢离子。 应用:氨基酸定量分析甲醛滴定法(间接滴定) A.直接滴定,终点pH过高(12),没有适当指示剂。 B.与甲醛反应,滴定终点在9左右,可用酚酞作指示剂。 C.释放一个氢离子,相当于一个氨基(摩尔比1:1) D.简单快速,一般用于测定蛋白质的水解速度。,(3) 与2,4-二硝基氟苯(DNFB)反应,反应特点 A.为- NH2的反应 B.氨基酸- NH2的一个H原子可被烃基取代(卤代烃) C.在弱碱性条件下,与DNFB发生芳环取代,生成二硝基苯氨基酸 应用:鉴定多肽或蛋白质的N-末端氨基酸 A.虽然多肽侧链上的- NH2、酚羟基也能与DNFB反应,但其生成物,容易与- DNP氨基酸区分和分离,首先由Sanger应用,确定了胰岛素的一级结构 A. B.水解DNP-肽,得DNP-N端氨基酸及其他游离氨基酸 C.分离DNP-氨基酸 D. 由Edman于1950年首先提出 为- NH2的反应 用于N末端分析,又称Edman降解法,肽分子与DNFB反应,得DNP-肽,层析法定性DNP-氨基酸,得出N端氨基酸的种类、数目,(4)与异硫氰酸苯酯(PITC)的反应,Edman (苯异硫氰酸酯法)氨基酸顺序分析法实际上也是一种N-端分析法。此法的特点是能够不断重复循环,将肽链N-端氨基酸残基逐一进行标记和解离。,肽链(N端氨基酸)与PITC偶联,生成PTC-肽 环化断裂:最靠近PTC基的肽键断裂,生成PTC-氨基酸和少 一残基的肽链,同时PTC-氨基酸环化生成PTH-氨基酸 分离PTH-氨基酸 层析法鉴定 Edman降解法的改进方法- DNS-Edman降解法 用DNS(二甲基萘磺酰氯)测定N端氨基酸 原理DNFB法相同 但水解后的DNS-氨基酸不需分离,可直接用电泳或层析法鉴定 由于DNS有强烈荧光,灵敏度比DNFB法高100倍,比Edman法高几到十几倍 可用于微量氨基酸的定量,用Edman降解法提供逐次减少一个残基的肽链 灵敏度提高,能连续测定。 多肽顺序自动分析仪 样品最低用量可在5pmol,(5)与荧光胺的反应 - NH2的反应 氨基酸定量,(6)与5,5-双硫基-双(2-硝基苯甲酸)反应 -SH的反应 测定细胞游离- SH的含量,(7)其他反应 成盐、成酯、成肽、脱羧反应,Section 5 氨基酸的分析分离,常用的方法有: 滤纸层析法(filter-paper chromatography: FPC) 薄层层析法(thin-layer chromatography: TLC) 离子交换层析法(Ion-exchange column chromatography: IEC) 气液色谱法(gas-liquid chromatography : GLC) 高效液相色谱法(high performance liquid chromatography: HPLC) 电泳技术,一、滤纸层析法(FPC),以滤纸作为支持物。 滤纸吸附的水为固定相(S) 用水饱和的有机溶剂作流动相(L) 在互不相溶的两相溶剂中,根据分配系数不同而分离物质的方法称为分配系数法。(主要与物质的极性有关) 分配系数(Ka)= 溶剂在流动相中的浓度/溶剂在固定相中的浓度 迁移率(Rf) = 原点到层析中心点的距离/原点到层析前沿的距离 即在一定条件下,被分离物质在纸上移动的距离与溶剂移动的距离之比。 在一定条件下,某种aa的Rf 值是一定的, 不同aa的Rf 值是不同的。 可利用两种不同的展层剂,进行双相层析(详见 P151图3-25)。,二、离子交换层析(IEC),离子交换剂是一种不溶于水、不溶于有机溶剂、不溶于酸碱的高分子化合物。根据所带基团又可分为: 1、阳离子交换剂 含-SO3H (强酸型) H型 -COOH(弱酸型) 若以Na+置换H+: -SO3Na Na型 -COONa,2、阴离子交换剂: 含-N+(CH3)3OH(强碱型) OH型 -N+H3OH (弱碱型) 若以Cl-置换OH-, -N+(CH3)3Cl Cl型 -N+H3Cl 如:732型阳离子交换树脂(pH1-2)分离aa: (1)转型:由H型Na型 (2)上样:混合aa (3)洗脱:提高洗脱液的pH或离子强度 aa的洗脱顺序:先酸性aa、再中性aa、后碱性aa。 若用阴离子交换树脂分离aa,洗脱顺序则相反。,蛋白质存在于所有的生物细胞中,是构成生物体最基本的结构物质和功能物质。 蛋白质是生命活动的物质基础,它参与了几乎所有的生命活动过程。,Chapter 4 蛋白质的共价结构,Section 1 概 述,一、蛋白质的定义 蛋白质:是一切生物体中普遍存在的,由天然氨基酸通过肽键连接而成的生物大分子;其种类繁多,各具有一定的相对分子质量,复杂的分子结构和特定的生物功能;是表达生物遗传性状的一类主要物质。 二、蛋白质在生命中的重要性 早在1878年,思格斯就在反杜林论中指出:“生命是蛋白体的存在方式,这种存在方式本质上就在于这些蛋白体的化学组成部分的不断的自我更新。” 可以看出,第一,蛋白体是生命的物质基础;第二,生命是物质运动的特殊形式,是蛋白体的存在方式;第三,这种存在方式的本质就是蛋白体与其外部自然界不断的新陈代谢。现代生物化学的实践完全证实并发展了恩格斯的论断,1.蛋白质是生命机体的重要组成成分,蛋白质占干重 人体中(中年人) 人体 45% 水55% 细菌 50%80% 蛋白质19% 真菌 14%52% 脂肪19% 酵母菌 14%50% 糖类1% 白地菌50% 无机盐7%,2.蛋白质是一种生物功能的主要体现者,(1)酶的催化作用 (2)调节作用(多肽类激素) (3)运输功能 (4)运动功能 (5)免疫保护作用(干扰素) (6)接受、传递信息的受体 (7)毒蛋白,3.外源蛋白质有营养功能,可作为生产加工的对象.,三、蛋白质的组成,1.元素组成 蛋白质是一类含氮有机化合物,除含有碳、氢、氧外,还有氮和少量的硫。某些蛋白质还含有其他一些元素,主要是磷、铁、碘、碘、锌和铜等。这些元素在蛋白质中的组成百分比约为: 碳 50 氢 7 氧 23 氮 16% 硫 03 其他 微 量,氮占生物组织中所有含氮物质的绝大部分。因此,可以将生物组织的含氮量近似地看作蛋白质的含氮量。由于大多数蛋白质的含氮量接近于16%,所以,可以根据生物样品中的含氮量来计算蛋白质的大概含量,蛋白质含量的测定: 凯氏定氮法 (测定氮的经典方法) 优点:对原料无选择性,仪器简单, 方法也简单; 缺点:易将无机氮(如核酸中的氮) 都归入蛋白质中,不精确。 一般,样品含氮量平均在16%,取其倒数100/16=6.25,即为蛋白质换算系数,其含义是样品中每存在1g元素氮,就说明含有6.25g 蛋白质);故: 蛋白质含量=氮的量100/166.25,除了上述法方外,还有 紫外比色法 双缩脲法 Folin酚 考马斯亮兰G250比色法 (条件:蛋白质必须是可溶的),2.化学组成(两种类型) 单纯蛋白质:水解为 -氨基酸 结合蛋白质=单纯蛋白质+辅基,四、 蛋白质的分类,一. 依据蛋白质的外形分类 按照蛋白质的外形可分为球状蛋白质和纤维状蛋白质。 1.球状蛋白质:(globular protein)外形接近球形或椭圆形,溶解性较好,能形成结晶,大多数蛋白质属于这一类。 2.纤维状蛋白质(fibrous protein)分子类似纤维或细棒。它又可分为可溶性纤维状蛋白质和不溶性纤维状蛋白质。 二.依据蛋白质的组成分类 按照蛋白质的组成,可以分为 1.简单蛋白(simple protein) :又称为单纯蛋白质;这类蛋白质只含由-氨基酸组成的肽链,不含其它成分。 (1)清蛋白和球蛋白:albumin and globulin广泛存在于动物组织中。清蛋白易溶于水,球蛋白微溶于水,易溶于稀酸中。 (2)谷蛋白(glutelin)和醇溶谷蛋白(prolamin):植物蛋白,不溶于水,易溶于稀酸、稀碱中,后者可溶于7080乙醇中。 (3)精蛋白和组蛋白:碱性蛋白质,存在与细胞核中。 (4)硬蛋白:存在于各种软骨、腱、毛、发、丝等组织中,分为角蛋白、胶原蛋白、弹性蛋白和丝蛋白。,2.结合蛋白(conjugated protein):由简单蛋白与其它非蛋白成分结合而成 (1)色蛋白:由简单蛋白与色素物质结合而成。如血红蛋白、叶绿蛋白和细胞色素等。 (2)糖蛋白:由简单蛋白与糖类物质组成。如细胞膜中的糖蛋白等。 (3)脂蛋白:由简单蛋白与脂类结合而成。 如血清-,-脂蛋白等。 (4)核蛋白:由简单蛋白与核酸结合而成。如细胞核中的核糖核蛋白等。 (5)色蛋白:由简单蛋白与色素结合而成。如血红素、过氧化氢酶、细胞色素c等。 (6)磷蛋白:由简单蛋白质和磷酸组成。如胃蛋白酶、酪蛋白、角蛋白、弹性蛋白、丝心蛋白等。,Section 2 肽(peptide),蛋白质是由一条或多条多肽(polypeptide)链以特殊方式结合而成的生物大分子。 蛋白质与多肽并无严格的界线,通常是将分子量在6000道尔顿以上的多肽称为蛋白质。 蛋白质分子量变化范围很大, 从大约6000到1000000道尔顿甚至更大,一. 肽 一个氨基酸的氨基与另一个氨基酸的羧基之间失水形成的酰胺键称为肽键,所形成的化合物称为肽。 由两个氨基酸组成的肽称为二肽,由多个氨基酸组成的肽则称为多肽。组成多肽的氨基酸单元称为氨基酸残基。 1.肽链,在多肽链中,氨基酸残基按一定的顺序排列,这种排列顺序称为氨基酸顺序 通常在多肽链的一端含有一个游离的-氨基,称为氨基端或N-端;在另一端含有一个游离的-羧基,称为羧基端或C-端。 氨基酸的顺序是从N-端的氨基酸残基开始,以C-端氨基酸残基为终点的排列顺序。如上述五肽可表示为: Ser-Val-Tyr-Asp-Gln,2.肽键,肽键的特点是氮原子上的孤对电子与羰基具有明显的共轭作用。 组成肽键的原子处于同一平面。 肽键中的C-N键具有部分双键性质,不能自由旋转。 在大多数情况下,以反式结构存在。,3.天然存在的重要多肽,在生物体中,多肽最重要的存在形式是作为蛋白质的亚单位。 但是,也有许多分子量比较小的多肽以游离状态存在。这类多肽通常都具有特殊的生理功能,常称为活性肽。 如:脑啡肽;激素类多肽;抗生素类多肽;谷胱甘肽;蛇毒多肽等。,+H3N-Tyr-Gly-Gly-Phe-Met-COO- +H3N-Tyr-Gly-Gly-Phe-Leu-COO- Met-脑啡肽 Leu-脑啡肽,二.蛋白质的一级结构,1. 蛋白质的一级结构(Primary structure)包括: (1)组成蛋白质的多肽链数目. (2)多肽链的氨基酸顺序, (3)多肽链内或链间二硫键的数目和位置。 其中最重要的是多肽链的氨基酸顺序,它是蛋白质生物功能的基础。,2.蛋白质的一级结构的测定,蛋白质氨基酸顺序的测定是蛋白质化学研究的基础。自从1953年F.Sanger测定了胰岛素的一级结构以来,现在已经有上千种不同蛋白质的一级结构被测定。 (1) 测定蛋白质的一级结构的要求,A.样品必需纯(97%以上); B.知道蛋白质的分子量; C.知道蛋白质由几个亚基组成; D.测定蛋白质的氨基酸组成;并根据分子量计算每种氨基酸的个数。 E.测定水解液中的氨量,计算酰胺的含量。,(2)测定步骤 多肽链的拆分:由多条多肽链组成的蛋白质分子,必须先进行拆分。几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基).,测定蛋白质分子中多肽链的数目:通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。 二硫键的断裂:几条多肽链通过二硫键交联在一起。可在可用8mol/L尿素或6mol/L盐酸胍存在下,用过量的-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。可以通过加入盐酸胍方法解离多肽链之间的非共价力;应用过甲酸氧化法或巯基还原法拆分多肽链间的二硫键。,巯基的保护,测定每条多肽链的氨基酸组成,并计算出氨基酸成分的分子比; 分析多肽链的N-末端和C-末端 末端氨基酸的测定:多肽链端基氨基酸分为两类,N-端氨基酸和C-端氨基酸。在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。末端氨基酸测定的主要方法有:,二硝基氟苯(DNFB)法 丹磺酰氯法:在碱性条件下,丹磺酰氯(二甲氨基萘磺酰氯)可以与N-端氨基酸的游离氨基作用,得到丹磺酰-氨基酸。此法的优点是丹磺酰-氨基酸有很强的荧光性质,检测灵敏度可以达到110-9mol。,肼解法:此法是多肽链C-端氨基酸分析法。多肽与肼在无水条件下加热,C-端氨基酸即从肽链上解离出来,其余的氨基酸则变成肼化物。肼化物能够与苯甲醛缩合成不溶于水的物质而与C-端氨基酸分离。,氨肽酶法:氨肽酶是一种肽链外切酶,它能从多肽链的N-端逐个的向里水解。根基不同的反应时间测出酶水解所释放出的氨基酸种类和数量,按反应时间和氨基酸残基释放量作动力学曲线,从而知道蛋白质的N-末端残基顺序。最常用的氨肽酶是亮氨酸氨肽酶,水解以亮氨酸残基为N-末端的肽键速度最大。 羧肽酶法:羧肽酶是一种肽链外切酶,它能从多肽链的C-端逐个的水解。根基不同的反应时间测出酶水解所释放出的氨基酸种类和数量,从而知道蛋白质的C-末端残基顺序。目前常用的羧肽酶有四种:A,B,C和Y;A和B来自胰脏;C来自柑桔叶;Y来自面包酵母。羧肽酶A能水解除Pro,Arg和Lys以外的所有C-末端氨基酸残基;B只能水解Arg和Lys为C-末端残基的肽键。,多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。多肽的选择性降解的方法有:,酶解法:胰蛋白酶,糜蛋白酶,胃蛋白酶,嗜热菌蛋白酶,羧肽酶和氨肽酶 化学法:溴化氰水解法,它能选择性地切割由甲硫氨酸的羧基所形成的肽键。,测定每个肽段的氨基酸顺序。 确定肽段在多肽链中的次序:利用两套或多套肽段的氨基酸顺序彼此间的交错重叠,拼凑出整条多肽链的氨基酸顺序。 确定原多肽链中二硫键的位置:一般采用胃蛋白酶处理没有断开二硫键的多肽链,再利用双向电泳技术分离出各个肽段,用过甲酸处理后,将每个肽段进行组成及顺序分析,然后同其它方法分析的肽段进行比较,确定二硫键的位置。,Chapter 5 蛋白质的空间结构,Section 1 蛋白质三维结构的内容及研 究方法 Protein分子中的原子或基团在三维空间的分布、排列及肽链主链在空间的走向。蛋白质的这种天然结构决定于3个因素: (1)与溶剂分子相互作用 (2)溶剂的pH与离子组成 (3)蛋白质的aa序列(重要因素),一、蛋白质的结构水平,一级结构(primary structure):蛋白质分子中的肽键、肽链、aa序列和二硫键的位置。 二级结构(secondary structure):蛋白质主链在空间的走向。 三级结构(tertiary structuer):由多个三维实体(结构域)构成的近似球状的构象。 四级结构(quaternary structure):寡聚蛋白的构象。,在二级结构和三级结构之间还可细分为: 超二级结构和结构域。 超二级结构(super secondary structure ):若干相邻的二级结构单元相互作用,形成有规则的组合体。 结构域(structure domain):多肽链中相对独立的三维实体。,蛋白质空间结构的研究方法,旋光色散法 重氢交换法 紫外差示光谱法 核磁共振光谱 激光拉曼光谱 X-晶体衍射 质子光谱 色质联用 圆二色散 荧光偏振光谱,X-射线衍射法,Section 2 蛋白质的二级结构,蛋白质的二级(Secondary)结构是指肽链的主链在空间的排列,或规则的几何走向、旋转及折叠。它只涉及肽链主链的构象及链内或链间形成的氢键。主要有-螺旋、-折叠、-转角。 不同蛋白质的二级结构是不同的。,肽平面(酰胺平面),多肽链的主链由许多酰胺平面组成,平面之间以碳原子相隔。而C-C键和C-N键是单键,可以自由旋转,其中C-C键旋转的角度称,C-N键旋转的角度称。和这一对两面角决定了相邻两个酰胺平面的相对位置,也就决定了肽链的构象。,早在20世纪30年代,Pauling和Corey就开始有X-射线衍射方法研究了氨基酸和肽的结构,他们得到了重要的结论: (1) 肽键的键长介于C-N单键和双键之间,具有部分双键的性质, 不能自由旋转。 (2) 参与肽键形成的两个原子及相邻的四个原子处于同一平 面,形成了酰胺平面,也称肽键平面,又称一个肽单位。 (3) 酰胺平面中的键长、键角是一定的 (4)在酰胺平面中C=0与N-H呈反式。 (5)相邻肽平面构成二面角,在-螺旋中肽平面的键长和键角一定,肽键的原子排列呈反式构型,相邻的肽平面构成两面角. 多肽链中的各个肽平面围绕同一轴旋转,形成螺旋结构,螺旋一周,沿轴上升的距离即螺距为0.54nm,含3.6个氨基酸残基;两个氨基酸之间的距离0.15nm. 肽链内形成氢键,氢键的取向几乎与轴平行,第一个氨基酸残基的酰胺基团的-CO基与第四个氨基酸残基酰胺基团的-NH基形成氢键。 蛋白质分子为右手-螺旋。,左手和右手螺旋,1. -螺旋,-螺旋结构的要点如下:, 蛋白质多肽链像螺旋一样盘曲上升,每3.6个氨基酸残基螺旋上升 一圈,每圈螺旋的高度为0.54nm,每个氨基酸残基沿轴上升0.15nm, 螺旋上升时,每个残基沿轴旋转100。 维系这种螺旋结构的作用力是氢键,多肽主链上第n个残基的羰基和第n+4个残基的酰氨基形成氢键。 -螺旋有右手螺旋和左手螺旋之分,天然蛋白质绝大部分是右手螺旋,到目前为止仅在嗜热菌蛋白酶中发现了一段左手螺旋。 -螺旋的稳定性主要靠氢键来维持。,除了上面这种典型的-螺旋外,还有一些不典型的-螺旋,所以规定了有关螺旋的写法,用“nS”来表示,n为螺旋上升一圈氨基酸的残基数,S为氢键封闭环内的原子数,典型的-螺旋用3.613表示,非典型的-螺旋有3.010, 4.416(螺旋)等。,一些侧链基团虽然不参与螺旋,但他们可影响-螺旋,(1)、在多肽链中连续的出现带同种电荷的极性氨基酸,-螺旋就不稳定。 在多肽链中只要出现pro,-螺旋就被中断,产生一个弯(bend)或结节(kink)(不能形成氢键,侧链占据相邻残基空间), Pro常出现在-螺旋末端; (2)、Gly的R基太小,难以形成-螺旋所需的两面角,所以和Pro一样也是螺旋的最大破坏者。 (3)、肽链中连续出现带庞大侧链的氨基酸如Ile,由于空间位阻,也难以形成-螺旋。,-螺旋在不同蛋白质中的情况,-角蛋白:全部由-螺旋构成 肌红蛋白: 大部分由-螺旋构成 溶菌酶:仅含一部分-螺旋 铁氧还蛋白:完全不具有-螺旋,-折叠是由两条或多条几乎完全伸展的肽链平行排列,通过链间的氢键交联而形成的。肽链的主链呈锯齿桩折叠构象。 在-折叠中,-碳原子总是处于折叠的角上,氨基酸的R基团处于折叠的棱角上并与棱角垂直,两个氨基酸之间的轴心距为0.35nm. -折叠结构的氢键主要是由两条肽链之间形成的;也可以在同一肽链的不同部分之间形成。几乎所有肽键都参与链内氢键的交联,氢键与链的长轴接近垂直。 -折叠有两种类型。一种为平行式,即所有肽链的N-端都在同一边。另一种为反平行式,即相邻两条肽链的方向相反。,2. -折叠,-折叠有平行和反平行的两种形式: 平行:两条肽链或肽段的走向相同; 反平行:走向相反,在-转角部分,由四个氨基酸残基组成.四个形成转角的残基中,第三个一般均为甘氨酸残基弯曲处的第一个氨基酸残基的 -C=O 和第四个残基的 N-H 之间形成氢键,形成一个不很稳定的环状结构。这类结构主要存在于球状蛋白分子中。,.自由回转 没有一定规律的松散肽链结构,但仍是紧密有序的稳定结构,通过主链间及主链与侧链间氢键维持其构象不同的蛋白质,自由回转的数量和形式各不相同分两类: 紧密环 连接条带,3. -转角,、超二级结构 在蛋白质分子中,由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的、在空间上能辨认的二级结构组合体。几种类型的超二级结构: ; 超二级结构在结构层次上高于二级结构,但没有聚集成具有功能的结构域, ,Section 3 超二级结构和结构域,对于较大的蛋白质分子或亚基,多肽链往往由两个或两个以上相对独立的三维实体缔合而成三级结构。这种相对独立的三维实体就称结构域。 结构域通常是几个超二级结构的组合,对于较小的蛋白质分子,结构域与三级结构等同,即这些蛋白为单结构域。 结构域一般由100200 个氨基酸残基组成,但大小范围可达 40400 个残基。氨基酸可以是连续的,也可以是不连续的 结构域之间常形成裂隙,比较松散,往往是蛋白质优先被水解的部位。酶的活性中心往往位于两个结构域的界面上 结构域之间由“铰链区”相连,使分子构象有一定的柔性,通过结构域之间的相对运动,使蛋白质分子实现一定的生物功能。 在蛋白质分子内,结构域可作为结构单位进行相对独立的运动,水解出来后仍能维持稳定的结构,甚至保留某些生物活性,、结构域,常见的结构域:,EF-hand(EF-hand Ca2+-binding motif) EF手型钙结合性模体(基序) Zinc finger(锌指结构) Leucin zipper(亮氨酸拉链结构),: 有时一个结构域就是蛋白质的功能域。 包含一个但通常是多个结构域。,结构域与功能域的关系,Section 4 蛋白质的三级结构,1、定义:蛋白质的三级结构是指多肽链在多种二级结构的基础上进一步盘旋、折叠,从而生成特定的空间结构(球状)。包括主链和侧链的所有原子的空间排布一般非极性侧链埋在分子内部,形成疏水核,极性侧链在分子表面,2、特点:球状蛋白质溶于水。 亲水 R基位于球状表面, 疏水 R基位于球状内部, 具有两个以上相对独立的三维结构实体 (结构域)。 3、典型代表:肌红蛋白 是哺乳动物肌肉中储存O2的蛋白质,由153个氨基酸组成的单链蛋白,分子量17.8KD(人),16.7KD(鲸)。,结构(1)球型结构 43.5 2.5nm。 (2)肽链的75%构成-螺旋,具8个-螺区。 (3)Pro,Ile,Ser,Thr,Asn都出现在拐弯处。 (4)分子疏水基都聚集在内部,整个分子致密结实,分子内部只有一个适于包含4个水分子的空间。 (5)具有一个血红素辅基,垂直伸出表面,卟啉Fe有6个配位键,其中4个与卟啉环上的N原子相连,1个与蛋白肽链中的His咪唑基相连,另1个用于结合氧气。,一、定义: 许多蛋白质是由两个或两个以上独立的三级结构通过非共价键结合成的多聚体,称为寡聚蛋白。寡聚蛋白中的每个独立三级结构单元称为亚基。蛋白质的四级结构是指亚基的种类、数量以及各个亚基在寡聚蛋白质中的空间排布和亚基间的相互作用。 四级结构中,肽链之间是以非共价键相连。 包括 均一寡聚蛋白:相同亚基构成 非均一寡聚蛋白:由不同亚级构成。,Section 5 蛋白质的四级结构,二、实例:血红蛋白,血红蛋白的四级结构的测定由佩鲁茨1958年完成,其结构要点为: 球状蛋白,寡聚蛋白,含四个亚基 两条链,两条链,22 链:141个残基; 链:146个残基 分子量65 000 含四个血红素辅基 亲水性侧链基团在分子表面,疏水性基团在分子内部,血红蛋白的性质: 1、协同效应 2、别构效应 3、玻尔效应,一级结构二级结构超二级结构结构域三级结构亚基四级结构,三蛋白质空间结构的作用力,维系蛋白质分子的一级结构:肽键、二硫键 维系蛋白质分子的二级结构:氢键 维系蛋白质分子的三级结构:疏水相互作用力、氢键、范德华力、盐键 维系蛋白质分子的四级结构:范德华力、盐键,a盐键(离子键 ) b氢键 c疏水相互作用力 d 范德华力 e二硫键 f 酯键,氢键、范德华力、疏水相互作用力、盐键,均为次级键 氢键、范德华力虽然键能小,但数量大 疏水相互作用力对维持三级结构特别重要 盐键数量小 二硫键对稳定蛋白质构象很重要,二硫键越多,蛋白质分子构象越稳定,离子键,氢键,范德华力,疏水相互作用力,四、aa顺序与空间构象的关系,1、核糖核酸酶复性实验 在8mol/L尿素存在下,用巯基乙醇处理,是4个二硫键断裂,整个肽链松散无规则,酶活性散失。 用透析法除去尿素和巯基乙醇,此酶又恢复活性达原来95%以上,复性后酶的理化性质与原来也一样。 在105中组合中,只选择了其中的一种(天然构象)。此实验证明:蛋白质的一级结构决定它的高级结构。即一维信息决定三维构象。,2、aa种类、顺序与空间构象的关系: Pro, Hyp不参与-螺旋的形成。 Ile, Asn, Ser, Thr形成的-螺旋不稳定。 Gly形成的-螺旋不规则。 侧链R基对-螺旋有影响,带同种电荷的R基相互排斥。,Chapter 6 蛋白质分子结构与功能的关系,一.蛋白质一级结构与功能的关系 研究蛋白质一级结构与功能的关系主要是:研究多肽链中不同部位的残基与生物功能的关系。 进行这方面的研究常用的方法有:同源蛋白质氨基酸顺序相似性分析、氨基酸残基的化学修饰及切割实验等。 例1 镰刀形贫血病 患者血红细胞合成了一种不正常的血红蛋白(Hb-S) 它与正常的血红蛋白(Hb-A)的差别:仅仅在于链的N-末端第6位残基发生了变化 (Hb-A)第6位残基是极性谷氨酸残基,(Hb-S)中换成了非极性的缬氨酸残基 使血红蛋白细胞收缩成镰刀形,输氧能力下降,易发生溶血 这说明了蛋白质分子结构与功能关系的高度统一性,例2 一级结构的局部断裂与蛋白质的激活 体内的某些蛋白质分子初合成时,常带有抑制肽,呈无活性状态,称为蛋白质原.蛋白质原的部分肽链以特定的方式断裂后,才变为活性分子. 例:胰岛素,在刚合成时,是一个比成熟的胰岛素分子大一倍多的单链多肽,称为前胰岛素原 前胰岛素原的N-末端有一段肽链,称为信号肽. 信号肽被切去,剩下的是胰岛素原。 胰岛素原比胰岛素分子多一段C肽,只有当C肽被切除后才成为有51个残基,分A、B两条链的胰岛素分子单体.,同源蛋白:是指在不同有机体中实现同一功能的蛋白质.同源蛋白中的一级结构中有许多位置的氨基酸对所有种属来说都是相同的,称为不变残基;其他位置的氨基酸称可变残基.不同种属的可变残基有很大变化.可用于判断生物体间亲缘关系的远近. 例:细胞色素C 60 个物种中,有 27 个位置上的氨基酸残基完全不变,是维持其构象中发挥特有功能所必要的部位,属于不变残基. 可变残基可能随着进化而变异,而且不同种属的细胞色素 C氨基酸差异数与种属之间的亲缘关系相关。亲缘关系相近者,氨基酸差异少,反之则多(进化树).,例3 同源蛋白,黄色: 不变残基(invariable residues) 蓝色 : 保守氨基酸(conservative residues) 未标记:可变残基(variable residues),二.蛋白质的构象与功能的关系 别构效应:又称变构效应,是指寡聚蛋白与配基结合,改变蛋白质构象,导致蛋白质生物活性改变的现象.它是细胞内最简单的调节方式. 例:血红蛋白的别构效应 一个亚基与氧结合后,引起该亚基构象改变 进而引起另三个亚基的构象改变 整个分子构象改变 与氧的结合能力增加,Chapter 7 蛋白质的性质及分离纯化,一.蛋白质的分子大小 蛋白质是分子量很大的生物分子,相对分子质量大于10 000.最高可达40 000 000(烟草花叶病毒) 蛋白质相对分子质量的测定方法 1.根据化学成分测定最小相对分子质量 此法首先利用化学分析方法测定蛋白质分子中某一特殊成分的百分含量 然后,假定蛋白质分子中该成分只有一个,据其百分含量可计算出最低相对分子质量: 最小相对分子质量(已知成分的相对分子、原子质量)/已知成分的百分含量 如果蛋白质分子中所含已知成分不是一个单位,则真实相对分子质量等于最小相对分子质量的倍数。 2. 超离心法 在60 00080 000r/min的高速离心力作用下,蛋白质分子会沿旋转中心向外周方向移动 用光学方法测定界面移动的速度即为蛋白质的离心沉降速度 蛋白质的沉降速度与分子大小和形状有关,沉降系数是溶质颗粒在单位离心场中的沉降速度,用S表示。 一个S单位,为110-13秒 相对分子质量越大,S值越大 蛋白质的沉降系数:1200S 由沉降系数S可根据斯维得贝格Svedberg方程计算蛋白质分子的相对分子质量: M=RST/D1v R:气体常数 T:绝对温度 D:扩散系数 :溶剂的密度 3.凝胶过滤法 凝胶过滤所用介质为凝胶珠,其内部为多孔网状结构 一定型号的凝胶网孔大小一定,只允许相应大小的分子进入凝胶颗粒内部,大分子则被排阻在外 洗脱时大分子随洗脱液从颗粒间隙流下来,洗脱液体积小;小分子在颗粒网状结构中穿来穿去,历程长,后洗脱下来,洗脱体积大 测定蛋白质分子量一般用葡聚糖,商品名:Sephadex,测得几种标准蛋白质的洗脱体积Ve 以相对分子质量对数(logM)对Ve作图,得标准曲线 再测出未知样品洗脱体积Ve 从标准曲线上可查出样品蛋白质的相对分子质量 4.SDS-聚丙烯酰胺凝胶电泳法 SDS:十二烷基硫酸钠,变性剂 普通蛋白质电泳的泳动速率取决于荷质比(净电荷、大小、形状) 用SDS和巯基乙醇(打开二硫键)处理 蛋白质变性(肽链伸展)并与SDS结合,形成SDS-蛋白质复合物 不同蛋白质分子的均带负电(SDS带负电);且荷质比相同(蛋白质分子大,结合SDS多;分子小,结合SDS少) 不同蛋白质分子具有相似的构象 用几种标准蛋白质相对分子质量的对数值对它们的迁移率作图 测出待测样品的迁移率 从标准曲线上查出样品的相对分子质量,影响迁移率的主要因素 凝胶的分子筛效应对长短不同的棒形分子会 产 生不同的阻力主要因素 凝胶的浓度和交联度 同一电泳条件下,分子小,受阻小,游动快,迁移率大。相对分子质量大者,迁移率小 优点:快速,样品用量少,可同时测几个样品 缺点:误差大,约为10(误差主要来源于迁移距离的测量误差) 此方法只能测得 亚基肽链的相对分子质量 二. 蛋白质的两性离解和电泳现象 蛋白质与多肽一样,能够发生两性离解,也有等电点。在等电点时(Isoelectric point pI),蛋白质的溶解度最小,在电场中不移动。 在不同的pH环境下,蛋白质的电学性质不同。在等电点偏酸性溶液中,蛋白质粒子带负电荷,在电场中向正极移动;在等电点偏碱性溶液中,蛋白质粒子带正电荷,在电场中向负极移动。这种现象称为蛋白质电泳(Electrophoresis)。,蛋白质在等电点pH条件下,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年人智能手机培训课件
- 微信公众号推广营销计划书
- 完形填空核心考点(含答案解析)-人教版八年级英语下册
- 老年人心血管疾病课件
- 酿酒知识培训总结课件
- 花样年华前程锦绣高二班学风主题班会
- 老年人常见病预防课件
- 实验:探究小车速度随时间变化的规律(学生版)-初升高物理暑假专项提升(人教版)
- 热点话题02 2025成都世运会(解析版)-中考英语阅读理解热点话题练习
- CN120197731A 基于零知识证明与联邦学习的模型生成方法、设备及产品
- 2023年湖南高速铁路职业技术学院单招职业适应性测试题库及答案解析
- 高一英语练字字帖
- 学校食堂教师就餐付费记录表
- 第一章工程材料(机械制造基础)
- GB/T 40073-2021潜水器金属耐压壳外压强度试验方法
- GB/T 10079-2018活塞式单级制冷剂压缩机(组)
- 起重设备安装安全事故应急预案
- 体育社会学(绪论)卢元镇第四版课件
- 语言学纲要(新)课件
- 针灸治疗神经性耳鸣耳聋课件
- 《水工监测工》习题集最新测试题含答案
评论
0/150
提交评论