已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品论文p-adic全纯曲线分享超平面的不计重数的唯一性定理颜启明同济大学数学系,上海200092 摘要:本文证明了关于到pn (cp )的p-adic全纯曲线分享2n + 2个一般位置超平面的不计重数的 唯一性定理,这改进了ru在2001年证明的分享3n + 1个一般位置超平面的唯一性定理。 关键词:多复变函数, p-adic全纯曲线, 超平面, 唯一性定理中图分类号: o174uniqueness theorem for p-adic holomorphic curves intersecting hyperplanes without counting multiplicitiesyan qimingdepartment of mathematics, tongji university, shanghai 200092abstract: in this paper, a uniqueness theorem is proved for p-adic holomorphic curves into pn (cp ) sharing 2n + 2 hyperplanes located in general position without counting multiplicities, which gives an improvement of rus result for 3n + 1 hyperplanes located in general position . key words: several complex variables, p-adic holomorphic curve, hyperplane, uniqueness theorem0 introductionit is well known that two nonconstant polynomials f, g over c are identical if there exist two distinct values a, b such that f (x) = a if and only if g(x) = a and f (x) = b if and only if g(x) = b.in 1926, r. nevanlinna 1 extended this result to meromorphic functions. he showed that, for two distinct nonconstant meromorphic functions f and g on the complex plane c, they can not have the same inverse images for five distinct values.w. w. adams and e. g. straus 2 showed that p-adic entire functions behave in manyways more like polynomials than like entire functions of a complex variable. they proved the基金项目: national natural science foundation of china (no. 11171255 and no. 10901120),doctoral programfoundation of the ministry of education of china (no. 20090072110053)作者简介: yan qiming(1979-),male,lecturer,ma jor research direction:several complex variables.- 10 -following theorem.theorem a. let f and g be two nonconstant p-adic entire functions. let a and b be two distinct(finite) values. assume that f (x) = a g(x) = a and f (x) = b g(x) = b. then f g.for p-adic meromorphic functions, they obtained the following result.theorem b. let f and g be two nonconstant p-adic meromorphic functions. let a1 , a2 , a3 anda4 be four distinct values. assume that f (x) = ai g(x) = ai for i = 1, 2, 3, 4. then f g.in 2001, ru 3 extended theorem b to p-adic holomorphic curves in projective space.a p-adic holomorphic curve f is a map f = f0 : : fn : cp pn (cp ), where f0 , . . . , fn are p-adic entire functions without common zeros. (f0 , . . . , fn ) is called a reduced representation of f .a p-adic holomorphic curve f : cp pn (cp ) is said to be linearly non-degenerate if f (cp )is not contained in any proper subspace of pn (cp ).hyperplanes h1 , . . . , hq in pn (cp ) are said to be in general position if any n + 1 of them are linearly independent.in 3, ru showed thattheorem c. let f, g : cp pn (cp ) be two linearly non-degenerate p-adic holomorphic curves. let h1 , . . . , h3n+1 be hyperplanes in pn (cp ) located in general position. assume that f 1 (hj ) = g1 (hj ) for 1 j 3n + 1 and f 1 (hi ) f 1 (hj ) = for i = j. if f (z) = g(z) forevery point z s3n+1 f 1 (h ), then f g.j=1jin this paper, we will improve theorem c as follows.theorem 1.1. let f, g : cp pn (cp ) be two linearly non-degenerate p-adic holomorphic curves. let h1 , . . . , h2n+2 be hyperplanes in pn (cp ) located in general position. assume that f 1 (hj ) = g1 (hj ) for 1 j 2n + 2 and f 1 (hi ) f 1 (hj ) = for i = j. if f (z) = g(z) forevery point z s2n+2 f 1 (h ), then f g.j=1j1 preliminarieslet p be a prime number, let | |p be the standard p-adic valuation on q normalized with|p|p = p1 . let qp be the completion of q with respect to this valuation, and let cp be the completion of the algebraic closure of qp . for simplicity, we denote the p-adic norm | |p on cp by | |. for more detail, we refer readers to 4,5.recall that an infinite sum converges in a non-archimedean norm if and only if its generalterm approaches zero. thus a function of the formh(z) = x an zn , an cpn=0is well-defined whenever|an zn | 0 as n .functions of this type are called p-adic analytic functions. if h is analytic on cp , then h is called a p-adic entire function. leth(z) = x an zn , an cpn=0be a p-adic analytic function on |z| r. for 0 r r, define mh (r) = max|z|=r |h(z)|. we have the following lemma.lemma 2.1. 2 the following statements hold:n(1) we have mh (r) = maxn0 |an |r .(2) the maximum on the right of (1) is attained for a unique value of n except for a discrete sequence of values r in the open interval (0, r).(3) if r 6 r and |z| = r 0).(6) we have mf g (r) = mf (r)mg (r) for any analytic functions f and g.for a nonzero p-adic entire function h, we denote the divisor of h by h . for z0 cp ,h (z0 ) := ordz0 (h).hdenote mthe divisor of h with truncated multiplicity by a positive integer m . thathmeans, for z0 cp , m (z0 ) := minm, h (z0 )h,=kwe define 1 1multiplicity. hence,be the divisor of all zeros of h with multiplicity k, without counting( 0if h (z0 ) = k,for z0 cp .h,=k (z0 ) =1if h (z0 ) = k,2 proof of main resultby the assumption, f = f0 : : fn and g = g0 : : gn are linearly non-degenerate p-adic holomorphic curves. let h1 , . . . , hq be q hyperplanes, located in general position. we denote hj = x0 : : xn pn (cp )|aj0 x0 + + ajn xn = 0, (f, hj ) = aj0 f0 + + ajn fn and (g, hj ) = aj0 g0 + + ajn gn , 1 j q. obviously, (f, hj ) 6 0 and (g, hj ) 6 0 for 1 j q.suppose that f 6 g. by changing indices if necessary, we may assume that(f, h1 )(f, h2 )(f, hk1 )(f, hk1 +1 )(f, hk2 )(g, h1 ) (g, h2 ) (g, hk ) 6 (g, hk +1 ) (g, hk )| grouzp 1112s )| grouzp 2 (f, hks1 +1 )(f, hks ) ,6 6 (g, hks1+1 ) (g, hkwhere ks = q.| grouzp ssince f 6 g, the number of elements of every group is at most n. we define the map : 1, . . . , q 1, . . . , q by( i + n if i + n q,(i) = i + n qif i + n q.(g,hi )it is easy to see that is bijective and |(i) i| n(note that q 2n). hence (f,hi )and(f,h(i) )(g,h(i) ) belong to distinct groups, so that (f, hi )(g, h(i) ) (f, h(i) )(g, hi ) 6 0.we consider (f, hi )(g, h(i) ) (f, h(i) )(g, hi ), 1 i q. (n 2)lemma 3.1. for each i 1, . . . , q, we haveqx 1 n1 1 1j=1,j=i,(i)(f,hj ) + (f,hi ) (n 1)(g,hi ),=1 (n 2)(g,hi ),=2 (g,hi ),=n1+(r) (n 1)n(f,h(i) )1 (g,h(i) ),=11 (g,h(i) ),=21 (g,h(i) ),=n1 (f,hi )(g,h(i) )(f,h(i) )(g,hi ) . (1)proof. for any j 1, . . . , q i, (i), since f = g on f 1 (hj ) (= g1 (hj ), we have that a zero of (f, hj ) is also a zero point of (f, hi )(g, h(i) ) (f, h(i) )(g, hi ).for any z0 f 1 (hi ) (= g1 (hi ), z0 is a zero of (f, hi )(g, h(i) ) (f, h(i) )(g, hi ) with(f,hi )(g,h(i) )(f,h(i) )(g,hi ) (z0 ) min(f,hi ) (z0 ), (g,hi ) (z0 ).note thatf 1 (hi )= z| min(f,hi ) (z), (g,hi ) (z) = (f,hi ) (z) z| min(f,hi ) (z), (g,hi ) (z) = (g,hi ) (z).case 1. if z0 z| min(f,hi ) (z), (g,hi ) (z) = (f,hi ) (z), then min(f,hi ) (z0 ), (g,hi ) (z0 ) = (f,hi ) (z0 ) min(f,hi ) (z0 ), n.case 2. consider z0 z| min(f,hi ) (z), (g,hi ) (z) = (g,hi ) (z).for z0 z| min(f,hi ) (z), (g,hi ) (z) = (g,hi ) (z) z|(g,hi ) (z) n, we have min(f,hi ) (z0 ), (g,hi ) (z0 ) = (g,hi ) (z0 ) n = min(f,hi ) (z0 ), n.for z0 z| min(f,hi ) (z), (g,hi ) (z) z|(g,hi ) (z) = k, k = 1, . . . , n 1, we haveiiii(g,hi )min(f,h ) (z0 ), (g,h ) (z0 ) = (g,h ) (z0 ) = k min(f,h ) (z0 ), n (n k) 1(z0 ).for any z0 f 1 (h(i) ) (= g1 (h(i) ), z0 is a zero of (f, hi )(g, h(i) ) (f, h(i) )(g, hi )with(f,hi )(g,h(i) )(f,h(i) )(g,hi ) (z0 ) min(f,h(i) ) (z0 ), (g,h(i) ) (z0 ).by the same argument, if z0 z| min(f,h(i) ) (z), (g,h(i) ) (z) = (f,h(i) ) (z), then min(f,h(i) ) (z0 ), (g,h(i) ) (z0 ) = (f,h(i) ) (z0 ) min(f,h(i) ) (z0 ), n.if z0 z| min(f,h(i) ) (z), (g,h(i) ) (z) = (g,h(i) ) (z) z|(g,h(i) ) (z) n, we have min(f,h(i) ) (z0 ), (g,h(i) ) (z0 ) = (g,h(i) ) (z0 ) n = min(f,h(i) ) (z0 ), n.1if z0 z| min(f,h(i) ) (z), (g,h(i) ) (z) z|(g,h(i) ) (z) = k, k = 1, . . . , n 1, we have min(f,h(i) ) (z0 ), (g,h(i) ) (z0 ) = (g,h(i) ) (z0 ) = k min(f,h(i) ) (z0 ), n (n k)(g,h(i) ) (z0 ). note that f 1 (hi ) f 1 (hj ) = for all 1 i j q. we haveqx 1 n1 1 1j=1,j=i,(i)(f,hj ) + (f,hi ) (n 1)(g,hi ),=1 (n 2)(g,hi ),=2 (g,hi ),=n1+(r) (n 1)n(f,h(i) )1 (g,h(i) ),=11 (g,h(i) ),=21 (g,h(i) ),=n1 (f,hi )(g,h(i) )(f,h(i) )(g,hi ) . (n 2)on the other hand, for each j, 1 j q,(n 1)+ (n 2)1 (g,hi ),=1by (1) and (2),+ + 1 (g,hi ),=2= n1 (g,hi ),=n1 1(g,hj )n(g,hj ). (2)qx 1 nn1 n n 1j=1,j=i,(i)(f,hj ) + (f,hi ) + (g,hi ) n(g,hi ) + (f,h(i) ) (r) + (g,h(i) ) n(g,h(i) ) (f,hi )(g,h(i) )(f,h(i) )(g,hi ) . (3)take summation of (3) over 1 i q, we haveq(q 2) x 1(f,hj )j=1q+(x n(f,hi )+ i=1n+ (g,hi )q) +(r) + x n(f,h(i) )i=1n(g,h(i) ) )qn (x 1(g,hi )1(g,h(i) ) )qxi=1i=1(f,hi )(g,h(i) )(f,h(i) )(g,hi ) .since is bijective, this givesq(q 2) x 1(f,hj )j=1q+ 2(+ x n(f,hi )i=1n(g,hi )q) 2n x 1(g,hi )i=1qxi=1(f,hi )(g,h(i) )(f,h(i) )(g,hi ) .similarly, we haveq(q 2) x 1(g,hj )j=1q+ 2(+ x n(f,hi )i=1n(g,hi )q) 2n x 1(f,hi )i=1qxi=1(f,hi )(g,h(i) )(f,h(i) )(g,hi ) .for q = 2n + 2, we have2n+22(x n(f,hj )j=1n+ (g,hj )2n+2i) x (f,h )(g,hi=1(i) )(f,h(i)(g,hi ) . (4)denote by w (f0 , . . . , fn )(w (g0 , . . . , gn ) the wronskian of f0 , . . . , fn (g0 , . . . , gn ). since fand g are linearly non-degenerate, we have w (f0 , . . . , fn )(w (g0 , . . . , gn ) 6 0.lemma 3.2. let h1 , . . . , h2n+2 be the hyperplanes in pn (cp ), located in general position.then2n+22n+2x (f,h ) w (f ,.,f ) x njj=10nj=1(f,hj ) . (5)proof. since f 1 (hi ) f 1 (hj ) = for all 1 i 0.|gjk (zk )| c2 max1ln+1|(g, hl )(zk )| = c2 |(g, hn+1 )(zk )|andhence, we obtain|fik (zk )| b|(f, hn+1 )(zk )| b|(f, hn+2 )(zk )| b|(f, h2n+2 )(zk )|gjk (zk )| b|(g, hn+1 )(zk )| b|(g, hn+2 )(zk )| b|(g, h2n+2 )(zk )|,where b 0 is a constant independent of zk .thus|(zk )| = |w (f0 , . . . , fn )(zk )|2 |w (g0 , . . . , gn )(zk )|22n+2yi=1 2q2n+2j=1 |(f, hj )(zk )|(g, hj )(zk )|(f, hi )(g, h(i) ) (f, h(i) )(g, hi )(zk )|b4n+4 |w (f0 , . . . , fn )(zk )|2 |w (g0 , . . . , gn )(zk )|2qn+1 2l=1 |(f, hl )(zk )|(g, hl )(zk )|2n+2y|fik (zk )|2n+2|gjk (zk )|2n+2i=1|(f, hi )(g, h(i) ) (f, h(i) )(g, hi )(zk )|.(8)by lemma 2.1,since, for 1 n,r1m (f,hj )0 (r) (f,hj )r1 and m (g,hj )0 (r) .(g,hj )it follows that(f, hj )()(f, hj )(f, hj )()=(f, hj )(1) r1(f, hj )0 ,(f, hj )and hencem (f,hj )() (r) ,(f,hj ) (f, hj )() (zk ) 1. (9)(f, hj )|zk |by the properties of the wronskian, we haveqn+1qn+1|w (f0 , . . . , fn )(zk )| = c3 |w (f, h1 ), . . . , (f, hn+1 )(zk )| ,j=1 |(f, hl )(zk )|where c3 0 is constant.j=1 |(f, hl )(zk )|by the properties of the p-adic norm and (9), we have|w (f, h1 ), . . . , (f, hn+1 )(zk )|qn+1l=1 |(f, hl )(zk )| (f, h )(1 ) (f, h)(n+1 )1n+1max +=n (zk ) (zk ) 1 +n+11(f, h1 )(f, hn+1 )|zk |n. (10)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业地产投资机会与风险分析
- 教育培训方案设计规划
- 公务员行测题库及答案
- 市政务服务标准化知识竞赛题库完整
- DB21-T 4044-2024 水稻育秧播种供盘机作业技术规程
- 2025年数据库工程师四级考试真题解析与备考方法
- 新预算法试题库及答案
- 6.3 种群基因组成的变化与物种的形成说课稿-2025-2026学年高一下学期生物学必修二
- 2025-2026学年八年级物理下册 第六章 力和机械 6.5 探究杠杆的平衡条件说课稿 (新版)粤教沪版
- 2025年初级护师实践能力模拟考试题库
- 油田hse制度管理制度
- 急性闭角型青光眼课件
- 电力调度考试题库及答案
- 2025年巴彦淖尔临河区妇幼保健院招聘工作人员题库带答案分析
- T/CBMCA 039-2023陶瓷大板岩板装修镶贴应用规范
- 《思想道德与法治》课件-第四章 明确价值要求 践行价值准则
- 2024-2025学年北京市西城区人教版六年级上册期末测试数学试卷
- 2025年广东省南粤交通投资建设有限公司招聘笔试参考题库含答案解析
- 防水工艺的流程
- 基础护理学中毒试题及答案
- 2025新疆中新建能源矿业有限责任公司部分岗位市场化招聘(2人)笔试参考题库附带答案详解
评论
0/150
提交评论