




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.定义,极限为零的变量称为无穷小.,一、无穷小,第八节 无穷大与无穷小,例如,注:,无穷小是变量,不能与很小的数混淆;,零是可以作为无穷小的唯一的数.,1. 无穷小与函数极限的关系:,证,必要性,充分性,无穷小量性质,2. 无穷小的运算性质:,定理2 在同一过程中,有限个无穷小的代数和仍是无穷小.,证,注意 无穷多个无穷小的代数和未必是无穷小.,定理3 有界函数与无穷小的乘积是无穷小.,证,推论1 在同一过程中,有极限的变量与无穷小的 乘积是无穷小.,推论2 常数与无穷小的乘积是无穷小.,推论3 有限个无穷小的乘积也是无穷小.,都是无穷小,绝对值无限增大的变量称为无穷大.,二、无穷大,特殊情形:正无穷大,负无穷大,注:,无穷大是变量,不能与很大的数混淆;,无穷大是一种特殊的无界变量,但是无界变量未必是无穷大.,不是无穷大,无界,,证,定理4 在同一自变量变化过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大.,证,三、无穷小与无穷大的关系,意义 关于无穷大的讨论,都可归结为关于无穷小的讨论.,A)无穷小;,B)无穷大;,C)有界但不是无穷小;,D)无界但不是无穷大。, 选D.,思考:,解: D正确.,例如,极限不同, 反映了趋向于零的“快慢”程度不同.,不可比.,观察各极限,四、无穷小的比较,定义:,记作=O()或 =O(),例1,解,例2,解,常用等价无穷小:,用等价无穷小可给出函数的近似表达式:,例如,解,定理(等价无穷小替换定理),证,五、等价无穷小代换,例3,解,不能滥用等价无穷小代换.,对于代数和中各无穷小不能分别替换.,注意,例4,解,解,错,例5,解,例6,例7 已知当x0时,,是等价无穷小,求a .,1.无穷小的比较:,反映了同一过程中, 两无穷小趋于零的速度快慢, 但并不是所有的无穷小都可进行比较.,2.等价无穷小的替换:,求极限的又一种方法, 注意适用条件.,高(低)阶无穷小; 等价无穷小; 无穷小的阶.,小结,思考题,任何两个无穷小量都可以比较吗?,思考题解答,不能,例当 时,都是无穷小量,但,不存在且不为无穷大,故当 时,比较下列各对无穷小的阶,1)x1时 与,2)x1时, 与2(1-x),4)x1时, 与,3)x0时, 与,解 1),2),与2(1-x)是同阶无穷小。,3),是比sinx tanx低阶无穷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省兰考县第二高级中学2026届高三上化学期中调研试题含解析
- 2025年教师资格证小学《综合素质》真题卷(带答案)
- 2025年教师资格证结构化面试模拟题及参考解析(一)
- 2025年秋季开学全体教师大会校长讲话:践行“六个学会”做学生生命中的那束光
- 2025-2026秋季学年第一学期学生国旗下演讲稿(20周):第八周 烽火淬英魂童心向朝阳-抗美援朝纪念日
- 皮肤科临床技术操作规范方案
- 市场监管法治培训课件
- 市交通运输消防知识培训课件
- 机器视觉技术及应用 课件 任务4 光源的选型
- COPD患者的居家氧疗护理查房
- 护理质量改进获奖案例
- 绿地日常巡查管理制度
- 中医急症诊疗方案(3篇)
- 2025年上海市高考化学试卷(含答案)
- 三区人才面试题及答案大全
- 物业服务礼仪培训大纲
- 2025年舞台灯光设备项目市场调查研究报告
- 防火钢质门、卷帘门项目可行性研究报告-商业计划书
- 普查保密协议书
- 《初学者指南:美术基础课件》
- 冶金矿山采矿设计规范
评论
0/150
提交评论