




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2立体几何中的向量方法,教学 目标,向量运算在几何证明与计算中的应用,掌握利用向量运算解几何题的方法,并能解简单的立体几何问题。 教学重点:向量运算在几何证明与计算中的应用。 教学难点:向量运算在几何证明与计算中的应用;,上一节的课外思考题,练习巩固,引入,方法的分析,课外练习,H,分析:面面距离转化为点面距离来求,尝试:,所求的距离是,课本第114页例1的思考(3) 晶体中相对的两个平面之间的距离是多少?(设棱长为1),几何法较难,如何用向量知识求点到平面的距离?,几何分析加向量运算 妙!妙!妙!,能否用法向量运算求解呢?,可证得,如何用向量法求点到平面的距离:,思考题分析,详细答案,D,A,B,C,G,F,E,D,A,B,C,G,F,E,1答案,2答案,2.(课本第116页练习2)如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,解:如图,以D为原点建立空间直角坐标系Dxyz 则D(0,0,0),A( ,0,0),B( , ,0),C(0, ,0),P(0,0, ),2.如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,例2:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线 (库底与水坝的交线)的距离AC和BD分别为 和 ,CD的长为 , AB的长为 。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,设向量 与 的夹角为 , 就是库底与水坝所成的二面角。,因此,回到图形问题,库底与水坝所成二面角的余弦值为,课外练习: 正三棱柱 中,D是AC的中点,当 时,求二面角 的余弦值.,C,A,D,B,C1,B1,A1,解:如图,以C为原点建立空间直角坐标系C-xyz.设底面三角形的边长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建材物流园工程可行性研究报告(参考)
- 国际冷链物流产业园扩建项目可行性研究报告(范文模板)
- 河南省开封市五县联考2023-2024学年高二上学期12月月考历史含解析
- 重庆第二师范学院《中级法语(二)》2023-2024学年第二学期期末试卷
- 平顶山学院《有机化学实验一》2023-2024学年第二学期期末试卷
- 广东茂名健康职业学院《节目策划通论》2023-2024学年第二学期期末试卷
- 四川信息职业技术学院《纳米工程导论》2023-2024学年第二学期期末试卷
- 湖南化工职业技术学院《体育赛事组织》2023-2024学年第二学期期末试卷
- 南阳科技职业学院《环境科学前沿》2023-2024学年第二学期期末试卷
- 贵州交通职业技术学院《网络与新媒体》2023-2024学年第二学期期末试卷
- 防火防爆技术课件:电气防爆
- 微笑曲线中文版课件
- 《古典决策理论》课件
- 2024年中考物理母题解密专题12 简单机械 机械效率考点精练(附答案)
- 观景台施工合同模板
- 存款代持协议书范文模板
- 标准化服务在博物馆展览策划中的应用考核试卷
- 2024年华东师大版学业水平信息技术模拟试卷(含答案解析)
- 派遣工的考勤管理制度
- GB/T 44353.1-2024动物源医疗器械第1部分:风险管理应用
- 中医培训课件:火龙罐的中医技术
评论
0/150
提交评论