




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
sparce coding and applications weizhi some examples image denoising image reconstruct image classification object detection importation object retrieval actions detection user recommendation text classification . outline what is sparse linear model how to do? decomposition problem reconstruction problem applications image denoising problem 3d object retrieval what is sparse representation similar to k-means k-means generate class each feature or sample is reconstructed by which class. sparse coding dictionary is similar to class each sample also is constructed by some word from dictionary. what is sparse linear model what is sparse linear model terrence tao proposed that rip constrain. how to do: decomposition problem we only have x and do not know d and a. how to do this problem: k-svd (general) efficient sparse coding algorithm nips 06 online dictionary learning for sparse coding, icml reconstruction problem we have d and x, how to get the a. matching pursuit orthogonal matching pursuit (general) application image denoising object detection 3d model retrieval image denoising training dictionary object detection dictionary 3d object retrieval h penalizes the distance between f and each feature in x experimental results references ansary, t. f., daoudi, m., & vandeborre, j. (n.d.). a bayesian 3d search engine using adaptive views clustering, 129. bengio, s., pereira, f., & strelow, d. (n.d.). group sparse coding, 18. chao, y.-w., yeh, y.-r., chen, y.-w., lee, y.-j., & wang, y.-c. f. (2011). locality-constrained group sparse representation for robust face recognition. 2011 18th ieee international conference on image processing, 761764. doi:10.1109/icip.2011.6116666 gao, y., wang, m., ji, r., wu, x., & dai, q. (2014). 3-d object retrieval with hausdorff distance learning. ieee transactions on industrial electronics, 61(4), 20882098. doi:10.1109/tie.2013.2262760 guoquan, w., yang, z., yanfeng, l., & lifen, w. (2013). an image denoising algorithm based on sparse representation, 36. mairal, j., leordeanu, m., & bach, f. (n.d.). discriminative sparse image models for class-specific edge detection and image interpretation, 114. bach, f., mairal, j., ponce, j., & sapiro, g. (2009a). sparse coding and dictionary learning for image analysis, (september). bach, f., mairal, j., ponce, j., & sapiro, g. (2009b). sparse coding and dictionary learning for image analysis, (september), 119. bach, mairal, ponce, & sapiro. (2009c). dictionary learning. elad, m., & aharon, m. (2006). image denoising via sparse and redundant representations over learned dictionaries. ieee transactions on image processing : a publication of the ieee signal processing society, 15(12), 373645. retrieved from /pubmed/17153947 mairal, j., elad, m., sapiro, g., ens, i., & umr, c. (2006). sparse learned representations for image restoration, 110. bach, f., mairal, j., ponce, j., & sapiro, g. (2009a). sparse coding and dictionary learning for image analysis, (september). bach, f., maira
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022年国立高雄大学自考英语(二)练习题(附答案解析)
- 河北省石家庄市赵县2024-2025学年七年级下学期期中考试英语试卷(含答案无听力原文及音频)
- 江苏省苏州市姑苏区2024-2025学年七年级下学期期末考试历史卷(含答案)
- 仓储管理实务课件5
- 2024北京二中高二(下)段考四数学试题及答案
- 2025年国际关系与外交知识考试卷及答案
- 吲哚投资项目可行性研究报告(立项备案模板)undefinedundefined
- 肿瘤内科业务学习体系构建
- 2025年影像学基础知识与技术应用试卷及答案
- 2025年农产品安全检测专业考试试题及答案
- 心率测定-教学设计-八年级体育健康教育
- 2025年ps cs5操作试题及答案
- 2025年太阳能空调系统合同
- 医院护理人文关怀实践规范专家共识课件
- 电商平台商家入驻流程及风险控制标准
- 2025年中国国投高新产业投资集团招聘笔试参考题库含答案解析
- 《影视照明技术》课件
- 视觉监测与机器学习在地铁隧道自动化监测中的应用研究
- 金属材料科学与工艺技术发展历程
- 【MOOC】《基础工业工程》(东北大学)中国大学慕课答案
- 商场安全生产培训
评论
0/150
提交评论