




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、随机变量的相互独立性,随机变量的独立性是概率论中的一 个重要概念.,两事件A,B独立的定义是: 若P(AB)=P(A)P(B) 则称事件A,B独立 ., 3.4 随机变量的独立性,定义,设X, Y是两个随机变量,若对任意的x, y,有,则称X,Y 相互独立 .,它表明,两个随机变量相互独立时,它们的联合 分布函数等于两个边缘分布函数的乘积 .,也可以用分布函数表示.,若 (X,Y)是离散型随机变量,则上述独立性的定义等价于:,则称X 和Y 相互独立.,对(X,Y)的所有可能取值(xi , yj ),有,二、离散型随机变量的独立性,即,其中f (x,y)是X,Y的联合密度,,成立,则称X,Y相互独立 .,若对任意的 x, y, 有,若 (X,Y )是连续型随机变量, 则上述独立性的定义等价于:,分别是X和Y的边缘密度函数.,三、连续型随机变量的独立性,(1) X 与Y相互独立的本质是:,对任意实数a, b, c, d,有,(2) X 与Y 是独立的,则g(X)与h(Y)也是独立的.,注 意,对于任意的i, j,都有 pij = pi.p.j,(1)离散型随机变量X和Y相互独立的充要条件:,(2)连续型随机变量X和Y相互独立的充要条件: 在f(x, y),fX(x) ,fY(y)的一切连续点(x,y), f(x, y)=fX(x) fY(y)成立 .,随机变量独立的充要条件,Y 0 1 P 0.5 0.5,例1,(X, Y) 的联合分布律为:,问 X与Y 是否独立?,解: 边缘分布律为:,X 0 1 P 0.7 0.3,因为,所以不独立.,例2 设某种货物的需求量X与供应量Y都在0,a上服从均匀分布,并且两者相互独立,求缺货的概率.,解:由题设,fX(x)=,fY(y)=,f(x,y)=fX(x)fY(y)=,PXY=,X与Y相互独立的充要条件是:,小 结,称随机变量X和Y是相互独立的,若对一切x, y都有F(x, y) = FX(x) FY(y),(1)离散型随机变量X和Y相互独立的充要条件: 对任意的i,j都有Pij= pi pj .,(2)连续型随机变量X和Y相互独立的充要条件: 在f(x, y),fX(x) ,fY(y)的一切连续点(x,y), f(x, y)=fX(x) fY(y)成立 .,课堂练习,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳泉市中医院静脉血栓防治考核
- 中国氯基三元复合肥项目投资计划书
- 阳泉市人民医院腹腔镜腹膜后淋巴结清扫术考核
- 中国甲醇汽油项目商业计划书
- 吕梁市人民医院雇主品牌建设与招聘策略设计试题
- 齐齐哈尔市中医院类风湿关节炎关节外科治疗考核
- 阳泉市人民医院产后盆底康复技术考核
- 长治市中医院姑息性放疗方案制定考核
- 邯郸市中医院儿童常见传染病防控考核
- 鸡西市人民医院学科协作能力考核
- 刘德武《如何画正方形》课件
- 胎儿的发育课件
- 政务礼仪-位次礼仪课件
- 连铸坯质量控制与缺陷控制课件
- 绿萝养殖幻灯片
- 股票基础学习实战篇
- 公司能源评审管理规定
- 暨南大学引进人才聘任合同
- 统编版高中语文必修上册第二单元4《喜看稻菽千重浪》《心有一团火温暖众人心》《探界者钟杨》同步练习【含答案】
- 机动车检测标准查新目录
- T∕CGMA 100.001-2016 闭式冷却塔
评论
0/150
提交评论