




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.一般正态分布的概率密度函数与分布函数,第四章 正态分布、大数定律与中心极限定理,1.正态变量的密度函数,第四章 正态分布、大数定律与中心极限定理,2.正态分布 的密度曲线,第四章 正态分布、大数定律与中心极限定理,3.正态变量的分布函数,4.标准正态分布的密度函数与分布函数,第四章 正态分布、大数定律与中心极限定理,4.正态密度函数的性质,第四章 正态分布、大数定律与中心极限定理,(3),第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,例题4.1.1,第四章 正态分布、大数定律与中心极限定理,解,查表得,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,例4.1.3 把温度调节器放入储存着某种液体的容器中,调节器的设定温度 为d 度,已知液体的温度T是随机变量,且,(2)若要求保持液体的温度至少为80度的概率不少于0.99, 问d至少为多少度?,解 (1)由已知,所求的概率为,第四章 正态分布、大数定律与中心极限定理,百分位点的解释和应用在数理统计部分还要详细说明,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,1.方差,3.中心矩,第四章 正态分布、大数定律与中心极限定理,若 k 为偶数,,第四章 正态分布、大数定律与中心极限定理,例题4.1.4,第四章 正态分布、大数定律与中心极限定理,例题4.1.5(2009,4分),第四章 正态分布、大数定律与中心极限定理,二维随机变量( X,Y ) 的正态分布概率密度表示如下:,第四章 正态分布、大数定律与中心极限定理,2.二维正态分布的边缘密度,定理4.2.1,其中,第四章 正态分布、大数定律与中心极限定理,置换积分变量,但是,一定注意,反过来,两个一维正态分布未必能确定二维正态分布.,第四章 正态分布、大数定律与中心极限定理,3.二维正态分布的独立性与相关系数,应用相关系数公式,能够计算出:,第四章 正态分布、大数定律与中心极限定理,另外, 若设相关系数为零,则,如果随机变量X与 Y 独立, 并且都服从正态分布,则,在二维正态分布中,独立性与不相关是一致的,这是二维 正态分布的一个重要特征.,第四章 正态分布、大数定律与中心极限定理,解,第四章 正态分布、大数定律与中心极限定理,例题4.2.3,第四章 正态分布、大数定律与中心极限定理,证,第四章 正态分布、大数定律与中心极限定理,推论,定理4.3.2,证,第四章 正态分布、大数定律与中心极限定理,以上结论还可以推广到更一般的情况,第四章 正态分布、大数定律与中心极限定理,例题4.3.1,定理4.3.3,第四章 正态分布、大数定律与中心极限定理,例题4.3.2,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,四、切比雪夫定理,1.背景:若已知一个随机变量分布的均值与方差,那么随机变量值的是以什么形式集中在均值附近?例如某年级1000名学生线性代数课程成绩的均值为85分,我们关心的是,有多少学生的成绩集中在均值附近?,2.切比雪夫定理(不等式):,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,例题4.4.1,第四章 正态分布、大数定律与中心极限定理,证,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,3.依概率收敛定义,第四章 正态分布、大数定律与中心极限定理,证,设随机变量 Xi 表示事件A 在第 i 次试验中发生的次数(i=1,2, ,n, ),则这些随机变量相互独立,服从相同的0-1分布,,且有数学期望与方差:,由切比雪夫定理的推论即得,第四章 正态分布、大数定律与中心极限定理,设随机变量之和为:,且数学期望和方差都存在:,则,则和的标准变量为:,2.中心极限定理变量的设定,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,第四章 正态分布、大数定律与中心极限定理,为任意实数,第四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省郴州市2024-2025学年八年级下学期5月期中英语试题(含笔试答案无听力答案、原文及音频)
- 建筑施工特种作业-建筑起重机械安装拆卸工(施工升降机)真题库-3
- 日食月食地理题目及答案
- 国家标准关于《机械制图》的基本规定(二)
- 2023-2024学年山东省滨州市高二下学期7月期末数学试题(解析版)
- 2023-2024学年湖南省株洲市炎陵县高二下学期6月期末考试数学试题(解析版)
- 2023-2024学年河南省安阳市林州市高二下学期期末考试数学试卷(解析版)
- 2025届河南省新乡市高三二模语文试题(解析版)
- 2024-2025学年浙江省杭州市联谊学校高二3月月考语文试题(解析版)
- 江苏阿尔法生物制药有限公司新建制剂、生物发酵及机械加工建设项目环评资料环境影响
- 家庭信仰的传承研究报告
- 《个人所得税的核算》课件
- 探究课程教学与非遗文化融合发展新路径
- 小学生心理健康教育-2024年秋形成性作业1-国开(AH)-参考资料
- 美容院会员卡转让协议书
- 废旧保温棉处置合同范例
- 【MOOC】思辨式英文写作-南开大学 中国大学慕课MOOC答案
- 《公路工程预算定额》(JTGT3832-2018)
- 基本药物政策培训
- 安徽省宣城市皖东南初中六校2024-2025学年上学期七年级期中考试数学试卷
- 古镇旅游活动策划方案
评论
0/150
提交评论