已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学四 一、选择题 1、【详解】应选(B).由已知条件,可设 ,则. 若,则+是关于的n阶无穷小,此时m=n;若a+b=0, 则+是关于的高阶无穷小,必有。故应选(B)。2、【详解】由 ,当固定时,对单调下降,故对时,有 ; 又由,当固定时,对单调上升,故对时,有 ;因此,当时,有 .应选(C).3、【详解】令,则时,且, , 由积分中值定理得到:存在,使,于是 . 令,由闭区间上连续函数的零点定理知,必有。 当时,因单调减少,必有,从而;当时,有,故为的极大值点,因此应选(D).4、【详解】应选(A). 因为,。所以,曲线y=f(x)在点处的切线斜率为,法线斜率为。由已知条件知,所以, 法线斜率为。5、【详解】选项(C)正确.6、 【分析】 本题也可找反例用排除法进行分析,但 两个命题的反例比较复杂一些,关键是抓住 与 ,迅速排除不正确的选项.【详解】 若Ax=0与Bx=0同解,则n-秩(A)=n - 秩(B), 即秩(A)=秩(B),命题成立,可排除(A),(C);但反过来,若秩(A)=秩(B), 则不能推出Ax=0与Bx=0同解,如,则秩(A)=秩(B)=1,但Ax=0与Bx=0不同解,可见命题不成立,排除(D),故正确选项为(B).7、【详解】应选.8、【详解】应选. 因为,所以, ,.因此应选.二、填空题9、【详解】(1)原式=10、【详解】由于题设只给出可导,故求极限时无法使用洛必达法则,只能应用导数定义进行计算。 = =.11、【详解】令,则 . 故 12、【详解】对所给关系式两边关于求导,得,且有初始条件. 于是,积分得,故 令应选(B)。13、【详解】或.14、【详解】 ,因为,所以必有,. , 于是 ,服从参数为的指数分布, 所以 .三、解答题15、【详解】= =38.16、【证明】设 ,则在上连续,且 , 所以,根据闭区间上的零点定理知,至少存在一点,使 ,即 . 在和上分别应用拉格朗日中值定理,得 至少存在一点,使 ; 至少存在一点,使 .因此有 .17、【详解】计算 因此。求导,得,即 .通解为 。在原方程中,令,得,代入通解中,定出。故所函数数为 。18、【分析】本题主要考查积分不等式的证明,是一种新出现的考试题型,利用被积函数的不等式和分部积分运算加以证明。引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法.【详解】令F(x) = f (x) - g(x),由题设G(x) 0,x a , b,G(a) = G(b) = 0,.从而 ,由于 G(x) 0,x a , b,故有,即 . 因此 【详解】由旋转体体积计算公式得于是,依题意得 .两边对t求导得 将上式改写为 ,即 令,则有 当时,由. 两边积分得.从而方程的通解为为任意常数)。由已知条件,求得从而所求的解为或20、(1)等价于,故当时,的秩为2; 当时,的秩为3。(2)当时,的秩为2,的特征值为4,4,0,其特征向量为 则21、【详解】令。两边同时左乘,有 。 ,为正定矩阵且,两边再同时左乘,同理可证,向量组线性无关。22、【详解】区域D实际上是以为顶点的正方形区域,D的面积为.二维随机变量(X,Y)的联合概率密度()设,.在区域D上,所以 . 当时,;当时,; 当时,. 则 于是 U的概率密度为 .设,.在区域D上,所以 . 当时,;当时,; 当时,. 则 于是 V的概率密度为 .() ,显然,. .所以 .()与的相关系数.23、【详解】设事件“考生不知道正确解法”,“考生知道正确解法,但因粗心而犯错”,“考生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酸再生工创新意识能力考核试卷含答案
- 汽车零部件再制造修复工常识能力考核试卷含答案
- 拖拉机热处理加工生产线操作调整工岗前安全知识竞赛考核试卷含答案
- 麦曲制曲工岗前理论实操考核试卷含答案
- 聚合物配制工安全培训考核试卷含答案
- 胱脓肿病征揭秘及护理关怀
- 真空电子器件零件制造及装调工岗位应急处置技术规程
- 淋巴发炎常见症状及护理要点注意事项
- 耳鸣常见症状及护理宝典
- 裂解汽油加氢装置操作工岗前风险识别考核试卷含答案
- 2025年基础护理学考试练习题库及答案(各章)
- 货柜装柜管理办法
- 环首都经济圈重点项目-建设百万千瓦级光伏廊道项目可行性研究报告
- 产品撤回召回与可追溯性模拟演练记录
- 非洲女性在现代历史中的角色-洞察阐释
- 2025年中国鱼兽农用腐植酸钠行业市场发展前景及发展趋势与投资战略研究报告
- 陶瓷喷涂服务合同协议
- 长协煤购销合同协议
- GB/T 1040.1-2025塑料拉伸性能的测定第1部分:总则
- (广东二模)2025年广东省高三高考模拟测试(二)语文试卷(含答案解析)
- 九年级数学下册人教版第二十六章《反比例函数》单元测试题(基础篇)(含答案)
评论
0/150
提交评论