




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
班级 姓名 学号第二章 矩阵及其运算1已知两个线性变换求从变量到变量的线性变换。解 由已知 所以有 2设求及.解 .3计算; 解:. 解:。4设,求.解 ; 利用数学归纳法证明: 当时,显然成立,假设时成立,则时由数学归纳法原理知:.5设求.解 首先观察, 由此推测 (*)用数学归纳法证明: 当时,显然成立. 假设时成立,则时,由数学归纳法原理知: (*)成立.6设都是阶对称阵,证明是对称阵的充要条件是.证明:由已知: 充分性:即是对称矩阵.必要性:.7设, ,问:(1)吗?(2)吗?(3)吗?解 (1), . 则 (2) 但故(3) 而 故 8举反例说明下列命题是错误的:()若,则;()若,则或;()若,且, 则.解 (1)取, ,但(2)取, ,但且(3)取, , . 且 但.9已知线性变换求从变量到变量的线性变换。解:所以即.10求下列方阵的逆阵: 解:, . . 解: 故存在从而 .(3) 解: 由对角矩阵的性质知 .11解矩阵方程: 解: 解:.12、利用逆阵解线性方程组: .解:解、(1)方程组可表示为 故 从而有 .13、设(为正整数),证明:.证明:一方面, 另一方面,由有 故两端同时右乘就有.14、设, 求.解由可得故.15、设, 其中, 求.解故所以 而 故 .16.设矩阵可逆,证明其伴随阵也可逆,且。证 因=,由的可逆性及,可知可逆,且;另一方面,由伴随阵的性质,有=.用左乘此式两边得=,比较上面两个式子,即知结论成立。17、设阶方阵的伴随阵为,证明: 若,则; .证明 (1)用反证法证明假设则有.由此得.这与矛盾,故当时, 有.(2)由于取行列式得到: 若 则若由(1)知此时命题也成立故有.18.设,求。解 由于所给矩阵方程中含有及其伴随矩阵,因此仍从公式=着手。为此,用左乘所给方程两边,得,又,=2AB-8E=8E=4E.注意到=,是可逆矩阵,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 输电安全规程培训课件
- 小麦栽培种植学课件
- 小鸭子课件教学课件
- 股权激励与员工培训结合的协议模板
- 定制衣柜全屋设计与智能家居安全解决方案合同
- 小鬼当家课件
- 输入汉字的公开课课件
- 谈骨气课件教学课件
- 说明文探究题课件
- 小蝌蚪的秘密课件
- 多家俱乐部转让合同范本
- 人工智能应用基础 课件 3.1AI办公
- 第二课 现代媒体艺术的类型和特点教学设计-2025-2026学年高中美术人美版2019选择性必修6 现代媒体艺术-人美版2019
- 2025年财政部高层次财会人才选拔考试综合试题及答案
- DL∕T28112024变电站二次系统通信报文规范
- 2025年“好年华 聚福州”(福州大学场)福州地铁高校毕业生招聘模拟试卷带答案详解
- 地球的外衣大气层课件
- 2025年时事政治考试100题(附答案)
- 2025年中学生法治素养竞赛题库及答案
- 2025年飞行器设计与工程师考试试卷及答案
- 城市空中交通管理试点工作方案
评论
0/150
提交评论