角平分线的性质.ppt_第1页
角平分线的性质.ppt_第2页
角平分线的性质.ppt_第3页
角平分线的性质.ppt_第4页
角平分线的性质.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

角平分线的性质,驶向胜利的彼岸,探究角平分线的性质,(1)实验:画一个AOB,用尺规作出AOB的平分线OP,过P作PD OA,PE OB 问题:比较PD和PE 的大小关系(量一量)。 PD=PE 再换一个新的位置看看情况会怎样?,(2)猜想: 角的平分线上的点到角的两边的距离相等.,证明:OC平分 AOB (已知) 1= 2(角平分线的定义) PD OA,PE OB(已知) PDO= PEO(垂直的定义) 在PDO和PEO中 PDO= PEO(已证) 1= 2 (已证) OP=OP (公共边) PDO PEO(AAS) PD=PE(全等三角形的对应边相等),已知:如图,OC平分AOB,点P在OC上,PDOA于点D,PEOB于点E 求证: PD=PE,(3)验证猜想,角的平分线上的点到角的两边的距离相等.,已知“一个点在一个角的平分线上”。结论为“这个点到这个角两边得距离相等”,角平分线上的点到角两边的距离相等。,得到角平分线的性质:,利用此性质怎样书写推理过程?,归纳:,如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在何处?(比例尺为120000),解决问题,S,解: 设OD=Xm 则由题得 = 解得x=0.025m 即OD=2.5cm 作夹角的角平分线OC,截取 OD=2.5cm ,D即为所求。,分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即RtCDF RtEDB.,现已有一个条件BD=DF(斜边相等),还需要我们找什么条件,DC=DE (因为角的平分线的性质) 再用HL证明.,试试自己写证明。你一定行!,已知:如图,ABC中 C=90,AD是ABC的角平分线,DEAB于E,F在AC上BD=DF, 求证:CF=EB。,应用与提高,证明: AD平分CAB DEAB,C90(已知) CDDE (角平分线的性质) 在tCDF和RtEDB中, CD=DE (已证) DF=DB (已知) RtCDFRtEDB (HL) CF=EB (全等三角形对应边相等),如图,E是AOB的角平分线OC上的一点, EMOB垂足为M,且EM=3cm,求点E 到OA的距离,分析:点E 到OA的距离是过点E作OA的垂线段,再根据角的平分线的性质,可知点E到OA的距离。,解:过E作ENOA垂足为N E是AOB的角平分线上的一点, EMOB, ENOA, EM=EN 又 EM=3cm, EN=3cm 即点E 到OA的距离为3cm。,E,课堂练习,M,已知:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC,垂足分别是E,F. 求证:EB=FC.,证明: AD平分CAB DEAB ,DFAC(已知) DE=DF (角平分线的性质) 在tBED和RtCFD中, BD=CD (已证) DE=DF (已知) Rt BED RtCFD (HL) BE=FC (全等三角形对应边相等),回味无穷,性质 角平分线上的点到这个角的两边距离相等. 几何语言: OC是AOB的平分线, P是OC上任意一点 PD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论