




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、空间曲线的切线与法平面,二、曲面的切平面和法线,第六节 多元函数微分学的几何应用,一、空间曲线的切线与法平面,过点 M 与切线垂直的平面称为曲线在该点的法,位置.,空间光滑曲线在点 M 处的切线为此点处割线的极限,平面.,设空间曲线的参数方程为 x(t), y(t), z(t), 这里假定(t), (t), (t)都在 上可导,设tt0和tt0t分别对应于曲线上的 点M0(x0, y0, z0)和M(x0+x, y0+y, z0+z),当MM0, 即t0时,作曲线的割线MM0,其方程为,得曲线在点M0处的切线方程为,一、空间曲线的切线与法平面,设空间曲线的参数方程为 x(t), y(t), z(t), 这里假定(t), (t), (t)都在 上可导,过曲线上tt0所对应的点M0切线方程为,向量T(j(t0), y(t0), w(t0)称为曲线在点M0的切向量.,通过点M0而与切线垂直的平面称为曲线在点M0处的法平面, 其法平面方程为 j(t0)(xx0)y(t0)(yy0)w(t0)(zz0)0.,一、空间曲线的切线与法平面,例1.,求圆柱螺旋线,对应点处的切线方程和法平面方程.,切线方程,法平面方程,即,即,解: 由于,对应的切向量为,在, 故,讨论:,1. 若曲线的方程为yj(x), zy(x), 则切向量T?,提示: 1. 曲线的参数方程可视为: xx, yj(x), zy(x), 切向量为T (1, j(x), y(x).,曲线x(t), y(t), z(t)在tt0所对应的点M0的切向量为T(j(t0), y(t0), w(t0).,2. 若曲线的方程为F(x, y, z)0, G(x, y, z)0, 则切向量T?,2. 两方程可确定两个隐函数: yj(x), zy(x).,切向量为T (1, j(x), y(x), 而j(x), y(x)要通过解方程组得到.,例2. 求曲线,在点,M ( 1,2, 1) 处的切线方程与法平面方程.,解. 方程组两边对 x 求导, 得,曲线在点 M(1,2, 1) 处有:,切向量,解得,切线方程,即,法平面方程,即,点 M (1,2, 1) 处的切向量,二、曲面的切平面与法线,设 有光滑曲面,通过其上定点,对应点 M,切线方程为,不全为0 .,则 在,且,点 M 的切向量为,任意引一条光滑曲线,下面证明:,此平面称为 在该点的切平面., 上过点 M 的任何曲线在该点的切线都,在同一平面上.,证:,在 上,得,令,由于曲线 的任意性 ,表明这些切线都在以,为法向量,的平面上 ,从而切平面存在 .,曲面 在点 M 的法向量,法线方程,切平面方程,曲面,时,则在点,故当函数,法线方程,令,特别, 当光滑曲面 的方程为显式,在点,有连续偏导数时,切平面方程,法向量,用,将,法向量的方向余弦:,表示法向量的方向角,并假定法向量方向,分别记为,则,向上,例3. 求椭球面,在点(1 , 2 , 3) 处的切,平面及法线方程.,解:,所以球面在点 (1 , 2 , 3) 处有:,切平面方程,即,法线方程,法向量,令,解,切平面方程为,法线方程为,例4求旋转抛物面,在点(2,1,4),处的切平面及法线方程.,例5. 确定正数 使曲面,在点,解: 二曲面在 M 点的法向量分别为,二曲面在点 M 相切, 故,又点 M 在球面上,于是有,相切.,与球面, 因此有,例6. 求曲线,在点(1,1,1) 的切线,解: 点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑结构安全监测方案
- 造价工程师案例分析(土建)试题及答案
- 2025年新员工采购流程与技巧试题及答案
- 全国高中数学竞赛试题及答案
- 农村小学英语“四位一体”课堂教学策略
- 景观项目施工进度与成本控制方案
- 新增数字减影血管造影机(DSA)项目环境影响报告表
- 崇州市领益科技冲压电子元器件技改项目环境影响报告表
- 高速施工员试题及答案
- 2025年奥密克戎相关试题及答案
- 2025年淮南市大通区和寿县经开区公开招聘社区“两委”后备干部30名考试参考试题及答案解析
- 长期照护师培训考核试卷及答案
- 医院感染监测
- 医保病历审核课件
- 煤矿安全规程2025版解读
- 2025年秋季开学典礼诗歌朗诵稿:纪念抗战胜利八十周年
- 2025本科金融学考试题及答案
- 军人识图用图课件
- 中医治疗腰痛
- 自贡恒基机械密封制品浸渍项目环评报告
- 乙型肝炎病毒护理查房
评论
0/150
提交评论