已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
定积分的概念,求由连续曲线y=f(x)对应的曲边梯形面积的方法,(2)取近似求和:任取xixi-1, xi,第i个小曲边梯形的面积用高为f(xi)而宽为Dx的小矩形面积 f(xi)Dx近似之。,(3)取极限:,所求曲边梯形的面积S为,取n个小矩形面积的和作为曲边梯形面积S的近似值:,xi,xi+1,xi,(1)分割:在区间0,1上等间隔地插入n-1个点,将它等分成 n个小区间: 每个小区间宽度x,一、定积分的定义,如果当n时,S 的无限接近某个常数,,这个常数为函数f(x)在区间a, b上的定积分,记作,从求曲边梯形面积S的过程中可以看出,通过“四步曲”: 分割-近似代替-求和-取极限得到解决.,定积分的定义:,定积分的相关名称: 叫做积分号, f(x) 叫做被积函数, f(x)dx 叫做被积表达式, x 叫做积分变量, a 叫做积分下限, b 叫做积分上限, a, b 叫做积分区间。,按定积分的定义,有 (1) 由连续曲线y=f(x) (f(x)0) ,直线x=a、x=b及x轴所围成的曲边梯形的面积为,(2) 设物体运动的速度v=v(t),则此物体在时间区间a, b内运动的距离s为,定积分的定义:,1,3定积分的值与积分变量用什么字母表示无关,即有,4规定:,注:,(2)定积分的几何意义:,x=a、x=b与 x轴所围成的曲边梯形的面积。,当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成的曲边梯形位于 x 轴的下方,,=-S,上述曲边梯形面积的负值。,定积分的几何意义:,=-S,探究: 根据定积分的几何意义,如何用定积分表示图中阴影部分的面积?,三: 定积分的基本性质,性质1.,性质2.,三: 定积分的基本性质,定积分关于积分区间具有可加性,性质3.,性质 3 不论a,b,c的相对位置如何都有,例1:利用定积分的定义,计算 的值.,例2.用定积分表示图中四个阴影部分面积,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,f(x)=x2,f(x)=x2,-1,2,f(x)=1,a,b,-1,2,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,例3:,解:,x,y,f(x)=sinx,1,-1,利用定积分的几何意义,判断下列定积分 值的正、负号。,利用定积分的几何意义,说明下列各式。 成立:,1),2).,1),2).,练习:,试用定积分表示下列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版(新版)一年级上学期数学第5单元6-10的认识和加减法课同步练习-10测试卷(附答案)
- 健康养生行业市场分析与营销推广策略
- 劳动争议预防与调解技巧实务
- 互联网行业用户增长数据分析与增长策略
- 东莞教师招聘面试备考策略
- 农业种植区土地整治方案与面试要点
- 体能恢复的策略与注意事项
- 医疗健康部医疗服务优化与健康管理计划
- 人力资源法务专员员工关系法律风险防控措施
- 加密技术保密专家职业发展规划
- 2025年郑州水务集团有限公司招聘80人模拟试卷带答案解析
- 2025年中国铁路呼和浩特局集团有限公司招聘高校毕业生406人备考题库附答案
- 企业公转私合同范本
- 2025秋人教版小学美术二年级上册期末过关练习卷及答案 (三套)
- Module2 Unit2 How much cheese did you buy(教学设计)-2024-2025学年外研版(三起)英语五年级上册
- 2025国家电投集团河南公司招聘8人笔试历年备考题库附带答案详解试卷3套
- 采购经理个人述职报告
- 大单元整合 数与代数(比)六年级数学上册(北师大版)(含解析)
- 大模型在企业的应用实践
- 2025年河南省体育彩票管理中心公开招聘合同制聘用人员50人笔试考试备考题库及答案解析
- 2025年河北机关事业单位工人技能等级考试题库(含答案)
评论
0/150
提交评论