上海浦东最好的数学暑假补习班数学暑假班.ppt_第1页
上海浦东最好的数学暑假补习班数学暑假班.ppt_第2页
上海浦东最好的数学暑假补习班数学暑假班.ppt_第3页
上海浦东最好的数学暑假补习班数学暑假班.ppt_第4页
上海浦东最好的数学暑假补习班数学暑假班.ppt_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,3.1.2 空间向量的数乘运算,/,2,1.理解向量数乘运算的含义及运算律,能够进行向量的数乘运 算. 2.掌握向量共线与共面定理,能运用定理证明一些几何问题.,/,3,课 前 热 身 (学生用书P63),4,1.与平面向量一样,实数与空间向量a的乘积a仍然是一个 _,称为_. 当0时,a与a方向_; 当0时,a与a方向_; 当=0时,a是一个_. a的长度是a的长度的_倍.,向量,向量的数乘运算,相同,相反,0,|,5,2.数乘运算律: 分配律:_;_. 结合律:(a)=_. 3.空间向量共线的充要条件是:对空间任意两个向量a、 b(b0),ab的充要条件是_. 4.空间任意两个向量都_.平行于同一平面的向量 叫做_.,(a+b)=a+b,(+)a=a+a,()a,a=b,共面,共面向量,1.正确应用共线向量及共线向量定理 (1)空间共线向量与平面共线向量的定义完全一样,当我们说a、b共线时,表示a、b两条有向线段所在直线既可能是同一直线,也可能是平行直线;当我们说ab时,也具有同样的意义. (2)用共线向量定理证明两直线平行是常用方法,但是要注意,向量平行与直线平行是有区别的,直线平行不包括共线的情况.如果应用共线向量定理判断a、b所在的直线平行,还需说明a(或b)上有一点不在b(或a)上.,7,8,2.共面向量定理的理解 (1)空间一点P位于平面MAB内的充分必要条件是存在有序实 数对(x,y),使 满足这个关系式的点P都在 平面MAB内;反之,平面MAB内的任一点P都满足这个关系式. 这个充要条件常用以证明四点共面.,9,(2)共面向量的充要条件给出了平面的向量表示式,说明任意 一个平面可以由两个不共线的平面向量表示出来,它既是判 断三个向量是否共面的依据,又是已知共面条件的另一种形 式,可以借此已知共面条件转化为向量式,以方便向量运算.另 外,在许多情况下,可以用“若存在有序实数组(x,y,z)使得对于 空间任意一点O,有 且x+y+z=1成立, 则P、A、B、C四点共面作为判定空间上四个点共面的依据.,10,题型一 空间向量的概念 例1:给出以下命题: 用分别在两条异面直线上的两条有向线段表示两个向量, 则这两个向量一定不共面; 已知空间四边形ABCD,则由四条线段AB、BC、CD、DA 分别确定的四个向量之和为零向量; 若三个向量共面,则这三个向量的起点和终点一定共面.,11,其中正确命题的序号是_. 解析:在空间,用有向线段表示的向量仍然是自由向量,而任意 两个向量总是共面向量,故命题错误;空间四边形的四条边 确定的四条线段中每条线段都可以确定两个方向相反的向量, 当它们不是首尾相接时,这四个向量的和就不是零向量,故命 题错误;命题就是空间共面向量定理,所以是正确的;命题 也是错误的,向量的共面与点的共面是不同的两个概念,若 其中两个向量是平行向量,12,第三个向量与其中一个向量有相同的起点,则这三个向量一 定是共面向量,但这三个向量的起点与终点却可以不共面.,13,变式训练1:下列说法正确的是( ) A.以三个向量为三条棱一定可以作成一个平行六面体,答案:B,14,题型二 空间向量的数乘运算,15,16,17,18,19,20,题型三 共线问题,21,22,规律技巧:(1)判定两向量共线就是找x使a=xb,要充分运用空 间向量运算法则结合空间图形,化简得出a=xb,从而得出ab. (2)要证明空间图形中的两直线平行可以先证明两直线所在的 向量平行,然后观察图形找出在一直线上有一点不在另一直 线上,则两直线平行.,23,变式训练3:射线AB、AC、AD不共面,连接BC、CD、DB,取 AB、BC、CD、DA的中点E、F、G、H,如图,试判断四边形 EFGH的形状,并用向量证明.,24,25,题型四 共面问题 例4:如右图,两个全等的正 方形ABCD、ABEF,在其对角 线AE、BD上(不含端点)分 别取点M、N,使AM=DN.求 证:MN平面BCE. 分析:可将直线与平面的平行转化成向量的共面,然后结合线 面平行的判定定理证明.,26,27,规律技巧:将要证的直线与平面平行的问题转化成向量共面 的问题,从而使繁琐地几何证明问题巧妙地转化成向量的运 算,体现了向量良好的工具性.,28,变式训练4:如右图,ABCD-ABCD中,点E是上底面 ABCD的中心, 求下列各式中的x、y、z的值:,29,30,技 能 演 练 (学生用书P65),31,基础强化 1.满足下列条件,能说明空间不重合的三点A、B、C共线的 是( ),答案:C,32,2.下列命题中正确的是( ) A.若a与b共线,b与c共线,则a与c共线 B.向量a、b、c共面,即它们所在的直线共面 C.零向量没有确定的方向 D.若ab,则存在唯一的实数,使a=b 解析:当b=0时,a与c不一定共线,所以A错.由共面向量的定义知,B错.当a与b是非零向量时,D正确.但命题中没有非零向量这个条件,所以D错. 答案:C,33,3.下列条件中使点M与点A、B、C一定共面的是( ),答案:C,34,4.下列结论中,正确的个数是( ) 若a、b、c共面,则存在实数x、y,使a=xb+yc 若a、b、c不共面,则不存在实数x、y,使a=xb+yc 若a、b、c共面,b、c不共线,则存在实数x、y,使a=xb+yc 若a=xb+yc,则a、b、c共面 A.0 B.1 C.2 D.3 解析:正确,错误. 答案:D,35,答案:A,36,37,38,7.向量a与b不共线,存在惟一一对非零实数m、n,使 c=m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论