




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学归纳法是用来证明某些与 有关的数学命题的 一种方法 基本步骤: 验证: 时,命题成立; 在假设 时命题成立的前提下,推出 时,命题成立 根据可以断定命题对一切正整数nn0都成立,1数学归纳法,正整数n,2数学归纳法证明步骤,nn0,nk(k n0),nk1,2.3 数学归纳法典型例题,题型一 恒等式问题,题型二 几何问题,先求出当n3时等式左右两边的值,验证不等式成立,然后作出假设:当nk时不等式成立,接着令nk1,将假设得到的结论与不等式的左边比较,可将所证不等式进行化简,题型三 不等式问题,思路探索,例5、 当n为正奇数时,7n1能否被8整除?若能,用数学归 纳法证明;若不能,请举出反例 错解 (1)当n1时,718能被8整除命题成立 (2)假设当nk时命题成立,即7k1能被8整除则当nk1 时,7k117(7k1)6不能被8整除 由(1)和(2)知,n为正奇数时,7n1不能被8整除,题型五 整除问题,不要机械套用数学归纳法中的两个步骤,而忽略了n是正奇数的条件证明前要看准已知条件 正解 (1)当n1时,718能被8整除,命题成立; (2)假设当nk时命题成立,即7k1能被8整除, 则当nk2时,7k2172(7k1)17249(7k1)48,因为7k1能被8整除,且48能被8整除,所以7k21能被8整除所以当nk2时命题成立由(1)和(2)知,当n为正奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国围巾市场调研及发展策略研究报告
- 生态停车场租赁权一次性转让及续租合同
- 2025年度生物科技领域知识产权质押融资合同范本
- 2025年度绿色调味品定制与时尚餐饮加盟服务合同
- 2025年跨境电商物流服务合同修订范本
- 2025-2030中国可视耳勺市场全景调研与需求前景规模分析报告
- 2025年新型城镇化建设中耕地指标配置与交易合同
- 2025年度企业级安防监控系统升级改造与安全风险评估合同
- 2025-2030中国双筒洗衣机市场深度调研及发展策略研究报告
- 2025年度房屋买卖合同解除及后续房屋保险责任界定协议
- 2023年安徽省五蒙高速公路开发有限公司招聘笔试题库及答案解析
- (完整版)淡水生物资源调查技术规范
- 大客户管理(很厉害)
- 契税教学讲解课件
- 养老机构放弃抢救及心肺复苏同意书、安宁服务协议
- 皮肤、伤口、造口护理(临床护理实践指南)
- 防范化解露天矿山安全生产风险
- 2022年中原出版传媒投资控股集团有限公司招聘笔试题库及答案解析
- 火电厂技术监督实施细则
- 水利水电工程建筑物技术讲座课件
- 代课教师聘用合同(5篇)
评论
0/150
提交评论